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I. PROBLEM STATEMENT

This technical report studies the existence and uniqueness of the maximum likelihood and

inference for margins estimators for the parameters of bivariate gamma distributions. The study

is first conducted for gamma distributions whose margins have the save shape parameter referred

to as mono sensor bivariate gamma distributions. The extension to multivariate multi sensor

bivariate gamma distributions is then discussed.

II. MONO-SENSOR BIVARIATE GAMMA DISTRIBUTIONS

A random vector X = (X1, X2)
T is distributed according to an MoMGD on R2

+ with shape

parameter q and scale parameter P if its moment generating function, or Laplace transform, is

defined as follows [1]:

ψq,P (z) = E
(
e−

P2
i=1 Xizi

)
= [P (z)]−q, (1)

where z = (z1, z2), q ≥ 0 and P (z) is the following affine polynomial1:

P (z) = 1 + p1z1 + p2z2 + p12z1z2, (2)

with the following conditions

p1 > 0, p2 > 0, p12 > 0, p1p2 − p12 ≥ 0. (3)

It is important to note that the conditions (3) ensure that (1) is the Laplace transform of a

probability distribution defined on [0,∞[2.

1A polynomial P (z) where z = (z1, . . . , zd) is affine if the one variable polynomial zj 7→ P (z) can be written Azj + B

(for any j = 1, . . . , d), where A and B are polynomials with respect to the zi’s with i 6= j.
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A. Margins

The Laplace transform of Xi is obtained by setting zj = 0 for j 6= i in (1). This shows

that Xi is distributed according to a univariate gamma distribution with shape parameter q and

scale parameter pi, denoted as Xi ∼ G(q, pi). Thus, all margins of X are univariate gamma

distributions with the same shape parameter q.

B. Probability density function

The pdf of an MoBGD can be expressed as follows (see [2, p. 436] for a similar result)

f2D(x) = exp

(
−p2x1 + p1x2

p12

)
xq−1

1 xq−1
2

pq
12Γ (q)

fq(cx1x2)IR2
+
(x), (4)

where IR2
+
(x) is the indicator function on [0,∞[2 (IR2

+
(x) = 1 if x1 > 0, x2 > 0 and IR2

+
(x) = 0

otherwise), c = (p1p2 − p12)/p
2
12 and fq(z) is related to the confluent hypergeometric function

[2, p. 462] defined by

fq(z) =
∞∑

k=0

zk

k!Γ (q + k)
.

C. Moments

The moments of a random vector X can be obtained by differentiating the Laplace transform

(1). Straightforward computations allow us to obtain the following results:

E[X1] = qp1, E[X2] = qp2,

var(X1) = qp2
1, var(X2) = qp2

2

cov(X1, X2) = q(p1p2 − p12),

r(X1, X2) =
cov(X1, X2)√

var(X1)
√

var(X2)
=
p1p2 − p12

p1p2

.

It is important to note that for a known value of q, an MoBGD is fully characterized by θ =

(E [X1],E [X2], r(X1, X2))
T which will be denoted θ = (m1,m2, r)

T in the remaining of the

paper. Indeed, θ and (p1, p2, p12) are obviously related by a one-to-one transformation. Note

also that the conditions (3) ensure that the covariance and correlation coefficient of (X1, X2) are

both positive.
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III. MAXIMUM LIKELIHOOD METHOD FOR THE PARAMETERS OF A BIVARIATE GAMMA

DISTRIBUTION

A. Principle

The maximum likelihood (ML) method can be applied to estimate θ since a closed-form

expression of the density is available. After removing the terms which do not depend on θ, the

log-likelihood function can be written as follows:

l(x; θ) = −nq log (m1m2)−
2∑

j=1

nqxj

mj(1− r)
− nq log (1− r) +

n∑
i=1

log fq(cx
i
1x

i
2), (5)

where c = rq2

m1m2(1−r)2
, and xj = 1

n

∑n
i=1 x

i
j is the sample mean of xj for j = 1, 2. By

differentiating the log-likelihood with respect to m1, m2 and r, and by noting that f ′q(z) =

fq+1(z), the following set of equations is obtained

nqx1

1− r
− nqm1 −

r

(1− r)2

q2

m2

∆ = 0, (6)

nqx2

1− r
− nqm2 −

r

(1− r)2

q2

m1

∆ = 0, (7)

nqx1

(1− r)m1

+
nqx2

(1− r)m2

− nq − 1 + r

(1− r)2

q2

m1m2

∆ = 0, (8)

where

∆ =
n∑

i=1

xi
1x

i
2

fq+1(cx
i
1x

i
2)

fq(cxi
1x

i
2)

. (9)

The maximum likelihood estimators (MLEs) of m1 and m2 are then easily obtained from these

equations:

m̂1ML = x1, m̂2ML = x2. (10)

After replacing m1 and m2 by their MLEs in (8), we can easily show that the MLE of r is

obtained by computing the root r ∈ [0, 1[ of the following function

g(r) = r − 1 +
q

nx1x2

(
n∑

i=1

xi
1x

i
2

fq+1(ĉx
i
1x

i
2)

fq(ĉxi
1x

i
2)

)
= 0, (11)

where

ĉ =
r

(1− r)2

q2

x1x2

.
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B. Concavity of the log-likelihood in the particular case p1 = p2 = p12

This section focuses on the interesting particular case where the affine polynomial P (2)

associated to a bivariate Gamma distribution has equal coefficients:

p1 = p2 = p12 = c. (12)

The corresponding bivariate gamma distributions will be referred to as normalized bivariate

gamma distribution. Indeed, if (Y1, Y2) is distributed according to a bivariate gamma distribution

with Laplace transform (2), it can easily be shown that the vector (X1, X2) = (αY1, βY2), with

α = p2

p12
and β = p1

p12
, is a distributed according to a normalized bivariate gamma distribution

with coefficient c = 1
1−r

, where r is the correlation coefficient of X1 and X2. As a consequence,

the mean of Xi for i = {1, 2} is mi = qpi = q/(1 − r) and the log-likelihood of (X1, X2)

defined in (5) reduces to a function of r only, which can be written (up to an additive constant):

l(x; r) = nq log (1− r) +
n∑

i=1

log fq(rx
i
1x

i
2). (13)

This section shows that the log-likelihood function l(x; r) has a unique maximum in [0, 1[.

1) Concavity of l(x; r): by using the concavity of x 7→ log fq(x) on the interval [0,+∞[ (see

proof in the appendix), we can prove that each function r 7→ log fq(rx
i
1x

i
2) for i = 1 . . . n is a

strictly concave function of r in [0, 1[. As the function h : x 7→ nq log(1− r) is strictly concave

in [0, 1[ (the reader will check easily that h′′(x) = −nq/(1− r)2 < 0), the log-likelihood l(x; r)

expressed in (13) is also a strictly concave function of r in [0, 1[ (as it is the sum of strictly

concave functions).

2) Unicity of the maximum of l(x; r):

Proposition 3.1: In the normalized case defined by p1 = p2 = p12, the MLE of r denoted as

r̂ML is unique. Moreover r̂ML = 0 if and only if 1
n

∑n
i=1 x

i
1x

i
2 ≤ q2. Otherwise r̂ML is the unique

root in ]0, 1[ of the following score function:

g(r) =
∂l(x; r)

∂r
=

−q
1− r

+
1

n

n∑
i=1

xi
1x

i
2

fq+1(rx
i
1x

i
2)

fq(rxi
1x

i
2)

. (14)

Proof: Since l(x; r) is concave, the score function g(r) is a strictly decreasing function

such that

g(0) = −q +
1

nq

n∑
i=1

xi
1x

i
2.

Depending on the value of g(0), we have two possible situations:
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• g(0) ≤ 0: in this case the log-likelihood is a strictly decreasing function on [0, 1[ and the

maximum is reached in r̂ML = 0. Note that g(0) ≤ 0 is equivalent to 1
n

∑n
i=1 x

i
1x

i
2 ≤ q2.

• g(0) > 0: it can be shown that g(r) → −∞ when r → 1 inducing that g is a continuous

mapping from [0, 1[ to [g(0),−∞[. As a consequence, there exists a unique root of g in

[0, 1[ which is the MLE of r. This root is the solution of g(r) = 0, or equivalently the

solution of the following nonlinear relation

∂l(x; r)

∂r
=

−q
1− r

+
1

n

n∑
i=1

xi
1x

i
2

fq+1(rx
i
1x

i
2)

fq(rxi
1x

i
2)

= 0.

C. Shape of the optimized criterion

Unfortunately, the concavity property of the log-likelihood is no longer satisfied in the general

case. The shape of the negative log-likelihood for typical values of the data samples (xi
1, x

i
2),

i = 1, ..., n, is illustrated in the figures below. For large values of r such that r = 0.98, we can

observe that the log-likelihood is not concave. However, it can also be seen that any gradient

algorithm will converge to the unique minimum of this negative log-likelihood.

IV. MULTI-SENSOR BIVARIATE GAMMA DISTRIBUTIONS

A. Definition

A vector Y = (Y1, Y2)
T distributed according to an MuBGD (denoted as Y ∼ G(q, P )), where

q = (q1, q2) and P is an affine polynomial) is constructed from a random vector X = (X1, X2)
T

distributed according to an MoBGD whose pdf is denoted as fX(x) and a random variable

Z ∼ G(q2 − q1, p2) independent on X with pdf fZ(z) . By using the independence assumption

between X and Z, the density of Y can be expressed as

fY(y) =

∫
fX(y1, s)fZ(y2 − s)ds. (15)

Straightforward computations leads to the following expression:

fY(y) =

(
p1p2

p12

)q1 yq1−1
1 yq2−1

2

pq1

1 p
q2

2

e
−

“
p2
p12

y1+
p1
p12

y2

”
Γ(q2)Γ(q1)

Φ3

(
q2 − q1; q2; c

p12

p2

y2, cy1y2

)
, (16)

where c = (p1p2 − p12)/p
2
12 and where Φ3 is the so-called Horn function. The Horn function is

one of the twenty convergent confluent hypergeometric series of order two, defined as [3]:



6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5
x 10

4

(a) r = 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1000

2000

3000

4000

5000

6000

7000

(b) r = 0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1000

2000

3000

4000

5000

6000

(c) r = 0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2000

3000

4000

5000

(d) r = 0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1500

2000

2500

3000

3500

4000

4500

(e) r = 0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1000

2000

3000

4000

5000

6000

7000

(f) r = 0.5

Fig. 1. Typical plots of the negative log-likelihood versus r for mono-sensor images (q = 2, n = 1000).

Φ3(a; b;x, y) =
∞∑

m,n=0

(a)m

(b)m+nm!n!
xmyn, (17)

where (a)m is the Pochhammer symbol such that (a)0 = 1 and (a)k+1 = (a+k)(a)k for any pos-

itive integer k. It is interesting to note that the relation fq(cy1y2) = Φ3

(
0; q; cp12

p2
y2, cy1y2

)
/Γ(q)

allows one to show that the MuBGD pdf defined in (17) reduces to the MoBGD pdf (4) for

q1 = q2 = q.
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Fig. 2. Typical plots of the negative log-likelihood versus r for mono-sensor images (q = 2, n = 1000).
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B. First moments of an MuBGD

The moments of Y can be obtained from the moments of X and Z. For instance, by using

the independence between X and Z, the following results can be obtained:

E[Y1] = q1p1, E[Y2] = q2p2,

var(Y1) = q1p
2
1, var(Y2) = q2p

2
2

cov(Y1, Y2) = cov(X1, X2) = q1(p1p2 − p12),

r(Y1, Y2) =
cov(X1, Y2)√

var(Y1)
√

var(Y2)
=

√
q1
q2

p1p2 − p12

p1p2

.

It is interesting to note that the conditions (3) ensure that the correlation coefficient obtained in

the bivariate case (d = 2) satisfy the constraint 0 ≤ r(Y1, Y2) ≤
√
q1/q2. In other words, the

normalized correlation coefficient defined by

r′(Y1, Y2) =

√
q2
q1

r(Y1, Y2) =
p1p2 − p12

p1p2

,

is such that 0 ≤ r′(Y1, Y2) ≤ 1. Note that for known values of the shape parameters q1 and q2,

an MuBGD is fully characterized by the parameter vector θ = (E[Y1], E[Y2], r
′(Y1, Y2)), since

θ and (p1, p2, p12) are related by a one-to-one transformation.

V. INFERENCE FUNCTIONS FOR MARGINS FOR THE PARAMETERS OF A MULTI-SENSOR

BIVARIATE GAMMA DISTRIBUTION

The density of an MuBGD (16) can be parametrized by θ = (m1,m2, r
′)T ∈ ∆ = (0,∞)2 ×

(0, 1). After removing the terms which do not depend on θ, the log-likelihood function of Y

can be written

l(Y ; θ) = −nq1 log (1− r′)− nq1 logm1 − nq2 logm2−n
q1

m1(1− r′)
Y 1 − n

q2
m2(1− r′)

Y 2

+
n∑

i=1

log Φ3

(
q2 − q1; q2; dY

i
2 , cY

i
1Y

i
2

)
,

(18)

where d = r′q2

m2(1−r′)
, Y 1 = 1

n

∑n
i=1 Y

i
1 , Y 2 = 1

n

∑n
i=1 Y

i
2 are the sample means of Y1 and Y2 and

c defined previously can be expressed as function of θ using the relation c = r′q1q2

m1m2(1−r′)2
.

IFM is a two-stage estimation method whose main ideas can be found for instance in [4,

Chapter 10] and are summarized below in the context of MuBGDs:
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• estimate the unknown parameters m1 and m2 from the marginal distributions of Y1 and

Y2. This estimation is conducted by maximizing the marginal likelihoods l(Y1;m1) and

l(Y2;m2) wrt m1 and m2 respectively,

• estimate the parameter r′ by maximizing the joint likelihood l(Y ; m̂1ML, m̂2ML, r
′) wrt r′.

Note that the parameters m1 and m2 have been replaced in the joint likelihood by their

estimates resulting from the first stage of IFM.

The IFM procedure is often computationally simpler than the ML method which estimates all

the parameters simultaneously from the joint likelihood. Indeed, a numerical optimization with

several parameters is much more time-consuming compared with several optimizations with

fewer parameters. The marginal distributions of an MuBGD are univariate gamma distributions

with shape parameters qi and means mi, for i = {1, 2}. Thus, the IFM estimators of m1,m2, r
′

are obtained as a solution of:

g(Y ; θ) =

(
∂l1(Y1;m1)

∂m1

,
∂l2(Y2;m2)

∂m2

,
∂l(Y ;m1,m2, r

′)

∂r′

)T

= 0T (19)

where li is the marginal log-likelihood function associated to the univariate random variable Yi,

for i = {1, 2}, and l is the joint log-likelihood defined in (18). The IFM estimators of m1 and

m2 are classically obtained from the properties of the univariate gamma distribution:

m̂1 IFM = Y 1, m̂2 IFM = Y 2. (20)

The IFM estimator of r′ is obtained by replacing m1 and m2 by Y 1 and Y 2 in (18) and by

minimizing the resulting log-likelihood l(Y ;Y 1, Y 2, r
′) wrt r′. This last minimization is achieved

by using a constrained quasi-Newton method (with the constraint r′ ∈ [0, 1]), since an analytical

expression of the log-likelihood gradient is available. The shape of l(Y;Y 1, Y 2, r
′) for typical

values of the data samples (yi
1, y

i
2), i = 1, ..., n is illustrated in the figures below. It can be clearly

seen that any gradient algorithm will converge to the unique minimum of the log-likelihood

l(Y;Y 1, Y 2, r
′), as in the mono-sensor case.



10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2000

4000

6000

8000

(a) r′ = 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1400

1600

1800

2000

2200

2400

2600

(b) r′ = 0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1400

1600

1800

2000

2200

2400

(c) r′ = 0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1400

1600

1800

2000

2200

(d) r′ = 0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1400

1600

1800

2000

(e) r′ = 0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1400

1600

1800

2000

2200

2400

(f) r′ = 0.5

Fig. 3. Typical plots of the negative log-likelihood versus r′ (q1 = 2, q2 = 4, n = 1000).
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Fig. 4. Typical plots of the negative log-likelihood versus r′ (q1 = 2, q2 = 4, n = 1000) for several samples.
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VI. APPENDIX: CONCAVITY OF log fq

The confluent hypergeometric function fq is such that f ′q(z) = fq+1(z) and f ′′q (z) = fq+2(z).

Thus the function log fq is concave if fq+2(x)fq(x)− f 2
q+1(x) < 0 for all x > 0, or equivalently

fq+1(x)fq−1(x)− f 2
q (x) < 0, x > 0. (21)

Let us denote un(q) = 1
n!Γ(q+n)

. The coefficient of zn of the entire function fq+1(z)fq−1(z)−f 2
q (z)

is

vn(q) =
n∑

k=0

[uk(q + 1)un−k(q − 1)− uk(q)un−k(q)].

A sufficient condition for (21) to be valid is vn(q) < 0 for all q > 1. Straightforward computations

lead to

vn(q) =
n∑

k=0

1

k!(n− k)!

[
1

Γ(q + k + 1)Γ(q + n− k − 1)
− 1

Γ(q + k)Γ(q + n− k)

]

=
n∑

k=0

1

k!(n− k)!

1

Γ(q + k)Γ(q + n− k)

[
q + n− k − 1

q + k
− 1

]

=
n∑

k=0

1

k!(n− k)!

1

Γ(q + k)Γ(q + n− k)

n− 2k − 1

q + k

=
n∑

k=0

n− 2k − 1

k!(n− k)!

1

Γ(q + k + 1)Γ(q + n− k)

= − (2n− 1)

Γ(q + n+ 1)Γ(q)
+

n−1∑
k=0

n− 2k − 1

k!(n− k)!

1

Γ(q + k + 1)Γ(q + n− k)

= − (2n− 1)

Γ(q + n+ 1)Γ(q)
+

1

2

n−1∑
k=0

1

Γ(q + k + 1)Γ(q + n− k)

[
n− 2k − 1

k!(n− k)!
+
n− 2(n− 1− k)− 1

(n− 1− k)!(k + 1)!

]

= − (2n− 1)

Γ(q + n+ 1)Γ(q)
− 1

2

n−1∑
k=0

1

Γ(q + k + 1)Γ(q + n− k)

[
(n− 2k − 1)2

(k + 1)!(n− k)!

]
< 0.
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