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ABSTRACT margins are distributed according to univariate gamma distributions

This paper addresses the problem of estimating the parameters Opg\(lng the same shape parameter. They have recently _shown inter-
family of bivariate gamma distributions whose margins have differ-SStNg properties for registration and change detection in SAR im-

ent shape parameters. These distributions are of interest in detectiffcS acquired by the same sensor (i.e. for images having the same

of changes in two synthetic radar aperture (SAR) images acquire mber O.f IO.OkS.) [6, 7]. This paper studies anew family of bivariate
by different sensors and having different numbers of looks. The eggamma dlstrlbunor_ls whose_ma_rglns have d|ff_ere_nt s_hape parameters
timators based on the maximum likelihood method and the metho ferred to as multisensor bivariate gamma distributions (MuBGDS).

of moments are studied for these distributions. An application to he application of MUBGDs to change detection in SAR images is

S . also investigated.
change detection s finally discussed. This paper is organized as follows. Sectibmecalls important re-

Index Terms— Gamma distributions, maximum likelihood es- sults on monosensor bivariate gamma distributions (MoBGDs). Sec-

timation, synthetic aperture imaging, multisensor systems tion 3 defines the family of MuBGDs considered for change detec-
tion in multisensor SAR images. Sectidnstudies the maximum
1. INTRODUCTION likelihood estimator (MLE) and the estimator of moments for the

unknown parameters of MuBGDs. Simulation results illustrating the
Combining informations acquired from multiple sensors has becamgerformance of MuBGDs for parameter estimation and change de-
very popular in many signal and image processing applications. Ongction are presented in SectiBnConclusions and perspectives are
motivation for this fusion is that the limitations of a specific kind of finally reported in Sectiof.
sensors can be compensated by the use of complementary sensors.
This is particularly true for earth observation applications as noted. MONOSENSOR BIVARIATE GAMMA DISTRIBUTIONS
in [1, 2]. This paper addresses the problem of change detection in
synthetic aperture radar (SAR) images acquired by multiple sensogs1. Definition

(characterized by different numbers of looks). T o g .
We consider two multi-date remote sensing images of the same scefle'andom vectorX = (X1, Xz)" is distributed according to a
monosensor bivariate gamma distribution (MoBGD) Rh with

1, the reference, and, the secondary image after an abrupt change,

like a natural disaster. The change detection problem consists of dg&h@P€ parameterand scale parametét if its moment generating

termining the map of the changed pixels from a similarity measure{Unction, or Laplace transform, is defined as follows [5]:

The key element of the change detection problem, is therefore the —E ( -2, xm) —_Ip —q 1
estimation of the correlation coefficient between the images. This Var(z) =E (e = [P@I, @
is usually done with an estimation window in the neighborhood of \yhare, — (21,22), ¢ > 0and P(z) = 1+ prz1 + paza +

each pixel. In order to estimate the change map with a good res;,, 2, 2, is a so-called affine polynomial whose coefficients satisfy
olution one needs the smallest estimation window. However, thishe following conditions

leads to estimations which may not be robust enough. In order to

perform high quality estimations with a small number of samples, p1 >0, p2 >0, pip2 — p12 > 0. @)

we propose to introduce a priori knowledge about the image statisyt is important to note that the conditions (2) ensure that (1) is the
tics. In the case of power radar images, it is well known that the_aplace transform of a probability distribution defined [Bfco[.
pixels are marginally distributed according to gamma distributionsBy settingz, = 0 (resp. z1 = 0) in (1), we obtain the Laplace
[3]. Therefore, multivariate gamma distributions (having univariatetransform ofX; (resp. X) , which is clearly a univariate gamma
gamma margins) seem good candidates for the robust estimation @fstribution with shape parameterand scale parameter (resp.
the correlation coefficient between radar images. When multi-datg,), denoted ast; ~ I'(¢,p1) (resp. X2 ~ I'(g,p2)). Thus, both
power radar images are acquired from different sensors, the numbessarginals ofX are univariate gamma distributions with the same
of looks associated with the differentimages can be different. As thehape parameter. The reader is invited to consult [6] and [7] for
number of looks is the shape parameter of the gamma distributiomaving more details regarding the properties of MoBGDs.

this leads to study multivariate gamma distributions whose margins

have different shape parameters. 2.2. Probability density function

A family of multivariate gamma distributions has been recently de-

fined by S. Bar Lev and P. Bernardoff [4, 5]. These distributionsThe probability density function (pdf) of an MoBGD can be ex-
are defined from an appropriate moment generating function. Thepressed as follows (see [8, p. 436] for a similar result)
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where]IRg+ (x) is the indicator function o0, co[? (]IRQ+ (x) = 1if
1> 0,25 > 0 andlgz (x) = 0 otherwise)c = (p1p> — p12)/pia

and f,(z) is related to the confluent hypergeometric function ([8, p.

462]) and defined by

h@)zggmr@+m'

3. MULTISENSOR BIVARIATE GAMMA DISTRIBUTIONS
3.1. Definition

Arandom vectolY = (Y1, Y>)7 distributed according to an MuBGD
is constructed as follows:

Y = Xu, Yo= X2+ Z, (3

where

e X = (X1, X,)7 is arandom vector distributed according to
an MoBGD orR?. with shape parameter and scale param-
eterP,i.e. X ~ I'(q1, P),

e 7 is a random variable independent fraénand distributed
according to a univariate gamma distributiBty: — g1, p2)
with g2 > ¢1.

By using the independence property betwdeand Z, the Laplace
transform ofY can be written:

2 —ai1
U(z) = (1 + Zpizi +p12z122> (1— pazo) (22790 (4)
i=1

with the following conditions:

p1 >0, p2 >0, p1p2 —p12 >0 and g2 > q1. (5)

. . . > (a)’rn m
Po(abiay)= Y, Gty

m,n=0

n

; @)

where (a), is the Pochhammer symbol such ti{ajo = 1 and
(a)k+1 = (a + k)(a)x for any positive integek.

3.3. Moments

The moments o = (Y1,Y2)” = (X1, X2 + Z)7T are directly ob-
tained from those oK andZ. By using the independence between
7 andX, the following results can be obtained:

E[Y:] = qipi, var(Yi) = qip;, i=1,2,
cov(Y1, Y2) = cov(X1, X2) = q1(p1p2 — p12),
cov(Yi, Ys -
r(Y1,Y2) = Wh.Y2) _ _ [6pipe —piz
Vvar(Y1)y/var(Y2) G2 pip2

It is interesting to note that the conditions (2) ensure that the cor-
relation coefficient satisfy the constraimt < r < /q1/q2. We

introduce the normalized correlation coefficient defined by

T/(YhYQ) = Zﬁ T(Yl,YQ)
\/ 1

such thatd < 7’ < 1. For known values of the shape parameters
¢1 andgz, an MuBGD is fully characterized by the parameter vec-
tor & = (E[Y1], E[Y2],7'(Y1,Y2)), since® and (p1,p2, p12) are
related by a one-to-one transformation.

_ P1p2 — P12
P1p2

4. PARAMETER ESTIMATION

The following notations are used in the rest of the paper

m1 = E[Y1], ma = E[Yz], ' = r(Y1,Ya), /3—2,
1

In the bi-dimensional case, the conditions (5) ensure that (4) is the

Laplace transform of a probability distribution defined[6rool?. inducing® = (m1,m2,r’). This section addresses the problem
By settingz1 = 0in (4), we observe that the random variable  of estimating the unknown parameter vedfiofrom n independent

is distributed according to a univariate gamma distribution with scalerectorsY = (Y*,...,Y"), whereY® = (Y{,Y3) is distributed

parameterp; and shape parameter. Similarly, Y> is distributed  according to an MuBGD with parameter vecgéarNote that the pa-

according to a univariate gamma distribution with scale parametetameters;; andg. are assumed to be known here, as in most practi-

p2 and shape parametes. Therefore the random vect®f is said
to be distributed according to an MuBGD with scale paraméter
and shape parametqr= (q1, q2), denoted a&% ~ I'(q, P). This
definition assumes that the first univariate marfinhas a shape
parameter;; smaller thany, without loss of generality. Note that an
MuBGD reduces to an MoBGD fap; = g».

3.2. Probability density function

By construction, the pdf of a bivariate vect®r ~ I'(q, P) denoted
as fy (y) is the convolution betweelfix (x) and the pdffz(z) of

Z ~ T'(gq2 — q1,p2). Straightforward computations leads to the

following expression:
p p
[p122 vit p112 yz}

I'(g2)'(q1)

x &3 (q2 - ql;qz;c]%yz,cym) )
2

pip2 ) @ ygl_lytzh_l e

P12 pi' 5’

fr(y) = ( ©

wherec = (p1p2 — p12)/pi» and whered; is the Horn function.

cal applications. However, this assumption could be relaxed.

4.1. Maximum Likelihood Method
4.1.1. Principles

The maximum likelihood (ML) method can be appliedYosince

a closed-form expression of its pdf is available. In this particular
case, after removing the terms which do not depend othe log-
likelihood function can be written

I(Y;0) = —ngilog (1 — ") — ng1 log m1 — nga log m
q1 g2
ma(1—r') ma(1 —r")

Yi—n 2

n (8)
+ ) log @3 (tp —q1;q1;dY5, chY;').

i=1

_ ' q142 — _"a Y, =1y i
wherec = mima (112" d = mi(l—r") anle - 527;:1}/1’
Y2 = 23" | Yy are the sample means &f andY. By differ-

entiating the log-likelihood with respect & the following MLE of

The Horn function is one of the twenty convergent confluent hyperins is easily derived

geometric series of order two, defined as [9]:

mamL = Y2-

)



The MLEs ofm; andr’ are obtained by replacing.: by Moy in 4.2. Method of Moments

(8) and minimizing the resulting log-likelihoddY; (m1, mam., ")

with respect tan; andr’. This last minimization is achieved by us- In order to appreciate the performance of the MLE, the following
ing a constrainedr; > 0 andr’ € [0, 1]) quasi-Newton method, ~€stimators of moments are investigated:

since an analytical expression of the log-likelihood gradient is avail-

able. It is important to note that the MLE of; differs fromY; in Mimo = X1, Mamo = X2, (12)
the general case. Finally, the MLE of the correlation coefficieist Xi_ X ) (XE— X
deduced by functional invariance as ™Mo = 2z (X 1) (X3 2) (13)

VI (X X2/ (0 - Xa)

™L = \/qu L.
& Note thatmay, = mame and thatry, is the usual empirical cor-
relation coefficient. The asymptotic performance of the estimator
4.1.2. Numerical evaluation of the Horn functidn Ono = (Mimo, M2mo, TMo) CaN be derived by imitating the results of

. L . . 2] derived in the context of time series analysis (see also [13]).
Some series representation in terms of special functions are useiﬁ] ] ysis ( [13])

to compute hypergeometric series of order two [10]. For the Horn

function @3 defined in (7), the following expansion is particularly 5 SIMULATION RESULTS
useful:
D3 (a;b;x,y) = Z v P 1Fi[a, b+ n, ], Many simulations_have t_;een conducted to valida‘_[e the previo_us the_o-
oS (b)nn! retical results. This section presents some experiments obtained with

avectorY = (Y1, Ys)? distributed according to a MuBGD whose

where 1 F; is the confluent hypergeometric series of order one, 'Laplace transform is (4)

e. 1Ffa,bx] =307, (g‘)” =", This confluent hypergeometric
serielel [a, b, x] can be expressed as follows [11]:

Bilabal = fe S

>0

5.1. Generation of synthetic data
om0l =0)ip (45— a),

it According to the definition given in Section 3.1, a veci¥rdis-

(10) tributed according to an MuBGD can be generated by adding a ran-
dom variableZ distributed according to a univariate gamma distri-

bution to a random vectaX distributed according to an MoBGD.

The generation of a vect& whose Laplace transform is (1) has

been described in [6] and is summarized below:

whereF, (z; v) is the cumulative distribution function of a univari-
ate gamma distribution with shape parametend scale parameter
1. Note that the summation in (10) is finite since> 1 is an integer.
This yields the following expression @fs:

() © (y/z)" o simulate2q independent multivariate Gaussian vectorof
®3(a;b;z,y) = F—e”ag“’b > yi' denoted agZ!, ..., Z%¢ with meang(0, 0) and the2 x 2 co-
a n:

li—4l

(11) variance matridxC' = (cij);<; j<o With cij =172,

b+n—a)i(l—a) y
x Z z':cl Fy(z;i+b+n—a). e compute thekth component ofX = (X1, Xz) as Xj, =
120 e 3 cicaq(Zi)?, whereZj, is thekth component ofZ".
where the last summation & 0) is finite. Equation (11) provides a
numerically stable way of evaluatinBs (a; b; z, y) for large values L
of - andy. When(z, y) is close to(0, 0), the definition ofbs in (7) -2~ Estimation performance

will be preferred. The first simulations compare the performance of the estimators cor-

4.1.3. Performance responding to the method of moments and the maximum likelihood
(ML) method as a function of the sample sizeNote that the pos-
The properties of the ML estimataizy. can be easily derived from  sjple values ofn corresponds to the numbers of pixels of squared
the properties of the univariate gamma distributitigz, p2). This  windows of size(2/ + 1) x (2 + 1), wherel € N. These val-
estimator is obviously unbiased, convergent and efficient. HOWUGS are appropnate to the Change detection prob|em The number
ever, the performance @iy and7ve are more difficult to study.  of Monte Carlo runs i200 for all figures presented in this section.
Of course, the MLE is known to be asymptotically unbiased andrhe other parameters for this example ate = 150, ms = 200,
asymptotically efficient, under mild regularity conditions. Thus, theg, = 1 (number of looks of the first image) ard = 2 (number
mean square error of the estimates can be approximated for largg looks of the second image). Figure 1 shows the MSEs of the es-
data records by the Cramer-Rao lower bound (CRLB). For unbiasegmated normalized correlation coefficient for = 0.8. The circle
estimators, the CRLB is obtained by inverting the Fisher informacurves correspond to the estimator of moments whereas the triangle
tion matrix. The computation of this matrix requires to determinecurves correspond to the MLE. This figure shows the interest of the
the negative expectations of second-order derivatives (with respefiL method, which is much more efficient for this problem than the
to m1, me andr) of ((Y;0) in (8). Closed-form expressions for method of moments. Note that the theoretical asymptotic MSEs of
the expectations are difficult to obtain because of the tegn®s.  poth estimators are also depicted (continuous lines). They are clearly
In such situation, it is very usual to approximate the expectationsn good agreement with the estimated MSEs, even for small values
by using Monte Carlo methods. This will provide interesting ap-of n. Finally, these figures show that “reliable” estimates-afan
proximations of the ML mean square errors (MSEs) (see simulatioBe obtained for values of larger than9 x 9, i.e. even for rela-
results of Section 5). tively small window sizes. The results regarding the estimation of
(m1, m2) confirm this result but are not reported here for brevity.
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Fig. 2. ROCs for synthetic data with different shape parameters.

distributions showed good properties for the detection of changes in
radar images with different numbers of looks.

5.3. Detection performance

This section considers synthetic vectors= (x1,z2)” (coming

7. ACKNOWLEDGMENTS

from 762 x 292 synthetic images) distributed according to MuBGDs The authors would like to thank J. Inglada and G. Letac for fruit-
with 7 = 0.3 andr = 0.7, modelling the absence and presence offul discussions regarding change detection and multivariate gamma

changes, respectively. The correlation coefficiewf each bivari-
ate vectorx") = ({7 20T (for 1 < i < 762,1 < j <
292) is estimated locally from pixels belonging to windows of size
n = (20 + 1) x (21 + 1) centered around the pixel of coordinates
(i,7) in the two analyzed images. The change detection problem is
addressed by using the following binary hypothesis test: [1]

Hy
H,

(absence of change) 7> A,

14
(presence of change) 7 < ), (14)

(2]

where )\ is a threshold depending on the probability of false alarm [3]
(PFA) andr is an estimator of the correlation coefficient (obtained

from the method of moments or the maximum likelihood principle). [4]
The performance of the change detection strategy (14) can be defined
by the two following probabilities [14, p. 34] -

o [6]

Pea

P [acceptingH; |H1 istrud = P [ < X |H, istrud,
P [acceptingH |Ho istrud = P[r> X |Ho istrug.

Thus, a pail Pra, Po) can be defined for each valuexfThe curves  [7]
representingPp as a function ofPr 4 are called receiver operating
characteristics (ROCs) and are classically used to assess detectiqgl
performance [14, p. 38].

The ROCs for the change detection problem (14) are depicted or9]
figures 2(a) and 2(b) for two different values of the shape parameters
correspondingtogi = 1,¢2 = 2)and 1 = 1, g2 = 5). The results [10]
are presented for two window siz€$ x 9) and (21 x 21). The
ML estimator clearly outperforms the moment estimator for thesd11]
examples. It is also interesting to note that the change detection is

better when the numbers of looks of the two images are closer. [12]

6. CONCLUSIONS

13
This paper presented a new family of bivariate gamma distribution[s ]
for multisensor SAR images. Estimation algorithms based on the
maximum likelihood principle and the methods of moments havd14]
been studied to estimate the parameters of these distributions. These

distributions. They are also very grateful to F. Colavecchia and G.
Gasaneo for providing important informations regarding the imple-
mentation of the Horn function.

8. REFERENCES

J. Inglada, “Similarity measures for multisensor remote sensing im-
ages,” inProc. IEEE IGARSS-QZToronto, Canada), pp. 104-106, June
2002.

J. Inglada and A. Giros, “On the possibility of automatic multi-sensor
image registration,Transactions on Geoscience and Remote Sensing
vol. 42, pp. 2104-2120, Oct. 2004.

T. F. Bush and F. T. Ulaby, “Fading characteristics of panchromatic
radar backscatter from selected agricultural targdEEE Trans. Geo-
science and Remote Sensiugl. 13, no. 4, pp. 149-157, 1975.

S. B. Lev, D. Bshouty, P. Enis, G. Letac, I. L. Lu, and D. Richards,
“The diagonal natural exponential families and their classificatidn,”
of Theoret. Proh.vol. 7, pp. 883-928, 1994.

P. Bernardoff, “Which multivariate Gamma distributions are infinitely
divisible?,”Bernoulli, 2006.

F. Chatelain, J.-Y. Tourneret, A. Ferrari, and J. Inglada, “Bivariate
gamma distributions for image registration and change detection,”
IEEE Trans. Image Processing006. submitted.

F. Chatelain, J.-Y. Tourneret, J. Inglada, and A. Ferrari, “Parameter esti-
mation for multivariate gamma distributions. Application to image reg-
istration,” in Proc. EUSIPCO-06(Florence, ltaly), sep 2006.

S. Kotz, N. Balakrishnan, and N. L. Johns@pntinuous Multivariate
Distributions vol. 1. New York: Wiley, 2nd ed., 2000.

F. O. A. Erdlyi, W. Magnus and F. Tricomiligher Transcendental
Functions vol. 1. New York: Krieger, 1981.

F. D. Colavecchia and G. Gasaneo, “f1: a code to compute Ap-
pell's F hypergeometric function,Computer Physics Communica-
tions vol. 157, pp. 32-38, feb 2004.

K. E. Muller, “Computing the confluent hypergeometric function,
M (a,b,x),” Numerische Mathematikvol. 90, pp. 179-196, Nov.
2001.

B. Porat and B. Friedlander, “Performance analysis of parameter esti-
mation algorithms based on high-order momenitstgrnational Jour-

nal of adaptive control and signal processjngpl. 3, pp. 191-229,
1989.

F. Chatelain, A. Ferrari, and J.-Y. Tourneret, “Parameter estimation for
multivariate mixed Poisson distributions,” Proc. IEEE ICASSP-Q6
vol. IV, (Toulouse, France), pp. 17-20, May 2006.

H. L. Van TreesDetection, Estimation, and Modulation Theory: Part
1. New York: Wiley, 1968.



