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ABSTRACT

This paper addresses the problem of estimating the parameters of a
family of bivariate gamma distributions whose margins have differ-
ent shape parameters. These distributions are of interest in detection
of changes in two synthetic radar aperture (SAR) images acquired
by different sensors and having different numbers of looks. The es-
timators based on the maximum likelihood method and the method
of moments are studied for these distributions. An application to
change detection is finally discussed.

Index Terms— Gamma distributions, maximum likelihood es-
timation, synthetic aperture imaging, multisensor systems

1. INTRODUCTION

Combining informations acquired from multiple sensors has became
very popular in many signal and image processing applications. One
motivation for this fusion is that the limitations of a specific kind of
sensors can be compensated by the use of complementary sensors.
This is particularly true for earth observation applications as noted
in [1, 2]. This paper addresses the problem of change detection in
synthetic aperture radar (SAR) images acquired by multiple sensors
(characterized by different numbers of looks).
We consider two multi-date remote sensing images of the same scene
I, the reference, andJ , the secondary image after an abrupt change,
like a natural disaster. The change detection problem consists of de-
termining the map of the changed pixels from a similarity measure.
The key element of the change detection problem, is therefore the
estimation of the correlation coefficient between the images. This
is usually done with an estimation window in the neighborhood of
each pixel. In order to estimate the change map with a good res-
olution one needs the smallest estimation window. However, this
leads to estimations which may not be robust enough. In order to
perform high quality estimations with a small number of samples,
we propose to introduce a priori knowledge about the image statis-
tics. In the case of power radar images, it is well known that the
pixels are marginally distributed according to gamma distributions
[3]. Therefore, multivariate gamma distributions (having univariate
gamma margins) seem good candidates for the robust estimation of
the correlation coefficient between radar images. When multi-date
power radar images are acquired from different sensors, the numbers
of looks associated with the different images can be different. As the
number of looks is the shape parameter of the gamma distribution,
this leads to study multivariate gamma distributions whose margins
have different shape parameters.
A family of multivariate gamma distributions has been recently de-
fined by S. Bar Lev and P. Bernardoff [4, 5]. These distributions
are defined from an appropriate moment generating function. Their
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margins are distributed according to univariate gamma distributions
having the same shape parameter. They have recently shown inter-
esting properties for registration and change detection in SAR im-
ages acquired by the same sensor (i.e. for images having the same
number of looks) [6, 7]. This paper studies a new family of bivariate
gamma distributions whose margins have different shape parameters
referred to as multisensor bivariate gamma distributions (MuBGDs).
The application of MuBGDs to change detection in SAR images is
also investigated.
This paper is organized as follows. Section2 recalls important re-
sults on monosensor bivariate gamma distributions (MoBGDs). Sec-
tion 3 defines the family of MuBGDs considered for change detec-
tion in multisensor SAR images. Section4 studies the maximum
likelihood estimator (MLE) and the estimator of moments for the
unknown parameters of MuBGDs. Simulation results illustrating the
performance of MuBGDs for parameter estimation and change de-
tection are presented in Section5. Conclusions and perspectives are
finally reported in Section6.

2. MONOSENSOR BIVARIATE GAMMA DISTRIBUTIONS

2.1. Definition

A random vectorX = (X1, X2)
T is distributed according to a

monosensor bivariate gamma distribution (MoBGD) onR2
+ with

shape parameterq and scale parameterP if its moment generating
function, or Laplace transform, is defined as follows [5]:

ψq,P (z) = E
“
e−

P2
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”
= [P (z)]−q, (1)

wherez = (z1, z2), q ≥ 0 andP (z) = 1 + p1z1 + p2z2 +
p12z1z2 is a so-called affine polynomial whose coefficients satisfy
the following conditions

p1 > 0, p2 > 0, p1p2 − p12 > 0. (2)

It is important to note that the conditions (2) ensure that (1) is the
Laplace transform of a probability distribution defined on[0,∞[2.
By settingz2 = 0 (resp. z1 = 0) in (1), we obtain the Laplace
transform ofX1 (resp. X2) , which is clearly a univariate gamma
distribution with shape parameterq and scale parameterp1 (resp.
p2), denoted asX1 ∼ Γ(q, p1) (resp.X2 ∼ Γ(q, p2)). Thus, both
marginals ofX are univariate gamma distributions with the same
shape parameterq. The reader is invited to consult [6] and [7] for
having more details regarding the properties of MoBGDs.

2.2. Probability density function

The probability density function (pdf) of an MoBGD can be ex-
pressed as follows (see [8, p. 436] for a similar result)

f2D(x) = exp
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+
(x) is the indicator function on[0,∞[2 (IR2

+
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x1 > 0, x2 > 0 andIR2
+
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andfq(z) is related to the confluent hypergeometric function ([8, p.
462]) and defined by

fq(z) =

∞X
k=0

zk

k!Γ (q + k)
.

3. MULTISENSOR BIVARIATE GAMMA DISTRIBUTIONS

3.1. Definition

A random vectorY = (Y1, Y2)
T distributed according to an MuBGD

is constructed as follows:

Y1 = X1, Y2 = X2 + Z, (3)

where

• X = (X1, X2)
T is a random vector distributed according to

an MoBGD onR2
+ with shape parameterq1 and scale param-

eterP , i.e.X ∼ Γ(q1, P ),

• Z is a random variable independent fromX and distributed
according to a univariate gamma distributionΓ(q2 − q1, p2)
with q2 > q1.

By using the independence property betweenX andZ, the Laplace
transform ofY can be written:

ψ(z) =

 
1 +

2X
i=1

pizi + p12z1z2

!−q1

(1− p2z2)
−(q2−q1), (4)

with the following conditions:

p1 > 0, p2 > 0, p1p2 − p12 > 0 and q2 ≥ q1. (5)

In the bi-dimensional case, the conditions (5) ensure that (4) is the
Laplace transform of a probability distribution defined on[0,∞[2.

By settingz1 = 0 in (4), we observe that the random variableY1

is distributed according to a univariate gamma distribution with scale
parameterp1 and shape parameterq1. Similarly, Y2 is distributed
according to a univariate gamma distribution with scale parameter
p2 and shape parameterq2. Therefore the random vectorY is said
to be distributed according to an MuBGD with scale parameterP
and shape parameterq = (q1, q2), denoted asY ∼ Γ(q, P ). This
definition assumes that the first univariate marginY1 has a shape
parameterq1 smaller thanq2 without loss of generality. Note that an
MuBGD reduces to an MoBGD forq1 = q2.

3.2. Probability density function

By construction, the pdf of a bivariate vectorY ∼ Γ(q, P ) denoted
asfY(y) is the convolution betweenfX(x) and the pdffZ(z) of
Z ∼ Γ(q2 − q1, p2). Straightforward computations leads to the
following expression:

fY(y) =
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wherec = (p1p2 − p12)/p
2
12 and whereΦ3 is the Horn function.

The Horn function is one of the twenty convergent confluent hyper-
geometric series of order two, defined as [9]:

Φ3(a; b;x, y) =

∞X
m,n=0

(a)m

(b)m+nm!n!
xmyn, (7)

where(a)m is the Pochhammer symbol such that(a)0 = 1 and
(a)k+1 = (a+ k)(a)k for any positive integerk.

3.3. Moments

The moments ofY = (Y1, Y2)
T = (X1, X2 +Z)T are directly ob-

tained from those ofX andZ. By using the independence between
Z andX, the following results can be obtained:

E[Yi] = qipi, var(Yi) = qip
2
i , i = 1, 2,

cov(Y1, Y2) = cov(X1, X2) = q1(p1p2 − p12),

r(Y1, Y2) =
cov(Y1, Y2)p

var(Y1)
p

var(Y2)
=

r
q1
q2

p1p2 − p12

p1p2
.

It is interesting to note that the conditions (2) ensure that the cor-
relation coefficientr satisfy the constraint0 ≤ r ≤

p
q1/q2. We

introduce the normalized correlation coefficient defined by

r′(Y1, Y2) =

r
q2
q1
r(Y1, Y2) =

p1p2 − p12

p1p2
,

such that0 ≤ r′ ≤ 1. For known values of the shape parameters
q1 andq2, an MuBGD is fully characterized by the parameter vec-
tor θ = (E[Y1], E[Y2], r

′(Y1, Y2)), sinceθ and (p1, p2, p12) are
related by a one-to-one transformation.

4. PARAMETER ESTIMATION

The following notations are used in the rest of the paper

m1 = E[Y1], m2 = E[Y2], r
′ = r(Y1, Y2)

r
q2
q1
,

inducing θ = (m1,m2, r
′). This section addresses the problem

of estimating the unknown parameter vectorθ from n independent
vectorsY = (Y1, . . . ,Yn), whereYi = (Y i

1 , Y
i
2 ) is distributed

according to an MuBGD with parameter vectorθ. Note that the pa-
rametersq1 andq2 are assumed to be known here, as in most practi-
cal applications. However, this assumption could be relaxed.

4.1. Maximum Likelihood Method

4.1.1. Principles

The maximum likelihood (ML) method can be applied toY since
a closed-form expression of its pdf is available. In this particular
case, after removing the terms which do not depend onθ, the log-
likelihood function can be written

l(Y; θ) = −nq1 log
`
1− r′

´
− nq1 logm1 − nq2 logm2

− n
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m1(1− r′)
Y 1 − n
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wherec = r′q1q2
m1m2(1−r′)2 , d = r′q1

m1(1−r′) andY 1 = 1
n

Pn
i=1 Y

i
1 ,

Y 2 = 1
n

Pn
i=1 Y

i
2 are the sample means ofY1 andY2. By differ-

entiating the log-likelihood with respect toθ, the following MLE of
m2 is easily derived cm2ML = Y 2. (9)



The MLEs ofm1 andr′ are obtained by replacingm2 by cm2ML in
(8) and minimizing the resulting log-likelihoodl(Y; (m1, cm2ML , r

′)
with respect tom1 andr′. This last minimization is achieved by us-
ing a constrained (m1 > 0 andr′ ∈ [0, 1]) quasi-Newton method,
since an analytical expression of the log-likelihood gradient is avail-
able. It is important to note that the MLE ofm1 differs fromY 1 in
the general case. Finally, the MLE of the correlation coefficientr is
deduced by functional invariance as

brML =

r
q1
q2
br′ML .

4.1.2. Numerical evaluation of the Horn functionΦ3

Some series representation in terms of special functions are useful
to compute hypergeometric series of order two [10]. For the Horn
function Φ3 defined in (7), the following expansion is particularly
useful:

Φ3(a; b;x, y) =

∞X
n=0

yn

(b)nn!
1F1[a, b+ n, x],

where 1F1 is the confluent hypergeometric series of order one, i.
e. 1F1[a, b, x] =

P∞
n=0

(a)n

(b)nn!
xn. This confluent hypergeometric

series1F1[a, b, x] can be expressed as follows [11]:

1F1[a, b, x] =
Γ(b)

Γ(a)
exxa−b

X
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i!xi
Fγ(x; i+ b−a),

(10)
whereFγ(x; ν) is the cumulative distribution function of a univari-
ate gamma distribution with shape parameterν and scale parameter
1. Note that the summation in (10) is finite sincea ≥ 1 is an integer.
This yields the following expression ofΦ3:

Φ3(a; b;x, y) =
Γ(b)

Γ(a)
exxa−b

∞X
n=0

(y/x)n
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×
X
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i!xi
Fγ(x; i+ b+ n− a).

(11)

where the last summation (i ≥ 0) is finite. Equation (11) provides a
numerically stable way of evaluatingΦ3(a; b;x, y) for large values
of x andy. When(x, y) is close to(0, 0), the definition ofΦ3 in (7)
will be preferred.

4.1.3. Performance

The properties of the ML estimatorcm2ML can be easily derived from
the properties of the univariate gamma distributionΓ(q2, p2). This
estimator is obviously unbiased, convergent and efficient. How-
ever, the performance ofcm1ML andbrML are more difficult to study.
Of course, the MLE is known to be asymptotically unbiased and
asymptotically efficient, under mild regularity conditions. Thus, the
mean square error of the estimates can be approximated for large
data records by the Cramer-Rao lower bound (CRLB). For unbiased
estimators, the CRLB is obtained by inverting the Fisher informa-
tion matrix. The computation of this matrix requires to determine
the negative expectations of second-order derivatives (with respect
to m1, m2 andr) of l(Y; θ) in (8). Closed-form expressions for
the expectations are difficult to obtain because of the termlog Φ3.
In such situation, it is very usual to approximate the expectations
by using Monte Carlo methods. This will provide interesting ap-
proximations of the ML mean square errors (MSEs) (see simulation
results of Section 5).

4.2. Method of Moments

In order to appreciate the performance of the MLE, the following
estimators of moments are investigated:

cm1Mo = X1, cm2Mo = X2, (12)

brMo =

Pn
i=1(X

i
1 −X1)(X

i
2 −X2)qPn

i=1(X
i
1 −X1)2

qPn
i=1(X

i
2 −X2)2

. (13)

Note thatcm2Mo = cm2ML and thatbrMo is the usual empirical cor-
relation coefficient. The asymptotic performance of the estimator
θ̂Mo = (cm1Mo, cm2Mo, brMo) can be derived by imitating the results of
[12] derived in the context of time series analysis (see also [13]).

5. SIMULATION RESULTS

Many simulations have been conducted to validate the previous theo-
retical results. This section presents some experiments obtained with
a vectorY = (Y1, Y2)

T distributed according to a MuBGD whose
Laplace transform is (4).

5.1. Generation of synthetic data

According to the definition given in Section 3.1, a vectorY dis-
tributed according to an MuBGD can be generated by adding a ran-
dom variableZ distributed according to a univariate gamma distri-
bution to a random vectorX distributed according to an MoBGD.
The generation of a vectorX whose Laplace transform is (1) has
been described in [6] and is summarized below:

• simulate2q independent multivariate Gaussian vectors ofR2

denoted asZ1, . . . , Z2q with means(0, 0) and the2 × 2 co-

variance matrixC = (ci,j)1≤i,j≤2 with ci,j = r
|i−j|

2 ,

• compute thekth component ofX = (X1, X2) asXk =
mk
2q

P
1≤i≤2q(Z

i
k)2, whereZi

k is thekth component ofZi.

5.2. Estimation performance

The first simulations compare the performance of the estimators cor-
responding to the method of moments and the maximum likelihood
(ML) method as a function of the sample sizen. Note that the pos-
sible values ofn corresponds to the numbers of pixels of squared
windows of size(2l + 1) × (2l + 1), wherel ∈ N. These val-
ues are appropriate to the change detection problem. The number
of Monte Carlo runs is200 for all figures presented in this section.
The other parameters for this example arem1 = 150, m2 = 200,
q1 = 1 (number of looks of the first image) andq2 = 2 (number
of looks of the second image). Figure 1 shows the MSEs of the es-
timated normalized correlation coefficient forr′ = 0.8. The circle
curves correspond to the estimator of moments whereas the triangle
curves correspond to the MLE. This figure shows the interest of the
ML method, which is much more efficient for this problem than the
method of moments. Note that the theoretical asymptotic MSEs of
both estimators are also depicted (continuous lines). They are clearly
in good agreement with the estimated MSEs, even for small values
of n. Finally, these figures show that “reliable” estimates ofr can
be obtained for values ofn larger than9 × 9, i.e. even for rela-
tively small window sizes. The results regarding the estimation of
(m1,m2) confirm this result but are not reported here for brevity.



Fig. 1. log MSEs versuslogn for parameterr (r′ = 0.8, q1 = 1,
q2 = 2).

5.3. Detection performance

This section considers synthetic vectorsx = (x1, x2)
T (coming

from 762×292 synthetic images) distributed according to MuBGDs
with r = 0.3 andr = 0.7, modelling the absence and presence of
changes, respectively. The correlation coefficientr of each bivari-
ate vectorx(i,j) = (x

(i,j)
1 , x

(i,j)
2 )T (for 1 ≤ i ≤ 762, 1 ≤ j ≤

292) is estimated locally from pixels belonging to windows of size
n = (2l + 1) × (2l + 1) centered around the pixel of coordinates
(i, j) in the two analyzed images. The change detection problem is
addressed by using the following binary hypothesis test:

H0 (absence of change): br > λ,

H1 (presence of change): br ≤ λ,
(14)

whereλ is a threshold depending on the probability of false alarm
(PFA) andbr is an estimator of the correlation coefficient (obtained
from the method of moments or the maximum likelihood principle).
The performance of the change detection strategy (14) can be defined
by the two following probabilities [14, p. 34]

PD = P [acceptingH1 |H1 is true] = P [br < λ |H1 is true] ,

PFA = P [acceptingH1 |H0 is true] = P [br > λ |H0 is true] .

Thus, a pair(PFA, PD) can be defined for each value ofλ. The curves
representingPD as a function ofPFA are called receiver operating
characteristics (ROCs) and are classically used to assess detection
performance [14, p. 38].

The ROCs for the change detection problem (14) are depicted on
figures 2(a) and 2(b) for two different values of the shape parameters
corresponding to (q1 = 1, q2 = 2) and (q1 = 1, q2 = 5). The results
are presented for two window sizes(9 × 9) and (21 × 21). The
ML estimator clearly outperforms the moment estimator for these
examples. It is also interesting to note that the change detection is
better when the numbers of looks of the two images are closer.

6. CONCLUSIONS

This paper presented a new family of bivariate gamma distributions
for multisensor SAR images. Estimation algorithms based on the
maximum likelihood principle and the methods of moments have
been studied to estimate the parameters of these distributions. These

(a)q1 = 1, q2 = 2 (b) q1 = 1, q2 = 5

Fig. 2. ROCs for synthetic data with different shape parameters.

distributions showed good properties for the detection of changes in
radar images with different numbers of looks.
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