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Abstract— We want to perform the attenuation correction in
the case of 3D attenuated ray transform with a parallel geometry.
We suppose that the attenuation function is available but not
registered with the data. We use the sum on each slice of the 2D
data consistency conditions of the attenuated Radon transform to
register the attenuation function with the data. We then correct
for the attenation using the Novikov formula. We show numerical
experiments indicating the feasibility of the approach and propose
a scheme including the diffusion correction for the registration of
CT to SPECT for SPECT imaging improvement.

Index Terms— Attenuated Radon Transform, Data Consistency
Condition, Tomography, Analytic inversion formula.

I. I NTRODUCTION

Attenuation and diffusion are major problems in SPECT.
For improving SPECT images both transmission and emission
data can now be jointly acquired on dedicated systems. Thus
attenuation and diffusion can be corrected in the activity recon-
struction from the SPECT data, see [1], [2], [5]. In this work,
we want to improve SPECT reconstructions by the registration
of an attenuation model (prior CT exam) with SPECT data
using the DCC (Data Consistency Conditions) of the attenuated
Radon transform [7], [8]. We suppose in this work that the
scattering has been previously corrected, but we propose at the
end of the paper how to introduce the scatter correction with
MC (Monte Carlo) simulations in an iterative scheme including
the presented work. Once the attenuation function has been
registered with the data, we compensated for the attenuation in
the reconstruction thanks to the Novikov’s formula [10].

In the next section we present our notation and we recall
the attenuated Radon transform DCC and its use for the
attenuation map registration to the emission data (attenuated
Radon transform). We also recall the analytical reconstruction
of the attenuated Radon transform [9], [10] that we use. In the
third section we present numerical experiments indicating that
the 3D registration of the attenuation map to emission data (3D
attenuated ray transform) is feasible. In the fourth section, we
describe a preliminary work on our MC approach for the scat-
tering estimation. We then show how the reconstruction from
the attenuated Radon transform, MC simulation for diffusion
correction, and the registration of the attenuation map to the
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emission data through the DCC optimization could cooperate
for the SPECT imaging improvement.

II. DCC AND INVERSION OF THE ATTENUATEDRADON

TRANSFORM IN 2D

We first recall the definition of the 2D attenuated Radon
transform of the functionf (the activity) at the angular position
φ(∈ [0, 2π[) and detector positionu(∈ [−1, 1] the radius of the
activity function support being normalized):

g(φ, u) = Rµf(φ, u) =
∫

Lφ,u,v

e−Dµ(x,ζ)f(x)dx, (1)

with

Dµ(x, ζ) =
∫ +∞

0

µ(x + tζ)dt

and Lφ,u is the lineuθ + ve3 + Rζ, with θ = (cos φ, sin φ),
ζ = (− sin φ, cos φ), see figure 1.
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Fig. 1. Geometrical parameters of the problem in 2D

As shown in [9], [10], ifµ is known,f can be reconstructed
by:

f(x1, x2) =
1
4
<

(
div

∫ 2π

0

θeDµ(x,ζ)
(
e−hHehg

)
(φ, x · θ)dφ

)

whereh = 1
2 (I + iH)Rµ, H is the Hilbert transform andRµ

is the 2D attenuated Radon transform.
In this part, we suppose that the attenuation mapµ can be

estimated from CT scanner data [3] yieldingµ0 and thatµ0 only
needs to be registered to the emission data (1). More precisely,
we search a transformT from R2 to R2, such that

µT (x)def=µ0(T (x)) = µ(x).



Fig. 2. First line, left: true attenuation mapµ, center: activity mapf , right:
attenuation modelµ0, second line, left: attenuation mapµT from the optimized
DCC, center: reconstruction with the attenuation map from the optimized DCC,
right: reconstruction with the true attenuation map.

Following [4], [8], we propose to estimatedT from the DCC:

min
T

∑

k,m

(∫ 2π

0

∫

R
g(φ, u)ume

1
2 (I+iH)RµT (φ,u)+ikφdudφ

)2

wherek ∈ N, m ∈ N, 0 ≤ m < k.
The estimation ofµ from the DCC optimization is severly

ill conditionned. Thus it is necessary to reduce the degree of
freedom ofT . We suppose here thatT is an affine transform,
Tx = Ax + b whereA is a 2 × 2 matrix andb ∈ R2, thus
only 6 parameters need to be estimated. In practice, it would
mean that we want to register the attenuation map (from a
CT) to emission data (SPECT) including the different scales
of the imaging systems. We restrict the sum in the DCC over
0 ≤ m < k ≤ P , P integer being chosen small (here equal
to 2). We show in figure 2 simulation results in 2D, including
2D reconstruction with the Navikov formula. These results are
similar to those obtained in [4], [8]. The DCC allows for a
sufficiently good estimation of the affine transform in order
to provide a reconstructed image essentially as good as those
obtained with the true attenuation.

III. 3D REGISTRATION OF THE ATTENUATION MAP TO THE

EMISSION DATA

In this part, we consider a classical parallel SPECT trajectory,
where the data coordinates are the angleφ ∈ [0; 2π[ of the γ-
camera and the(u, v) ∈ R2 coordinates of the pixels on the
γ-camera along the axisθ = (cosφ, sin φ, 0) ande3 = (0, 0, 1),
see figure 3.

We consider that the SPECT emission datad contains two
types of contributions: the direct contributionsg modeled by
the attenuated Radon transform and the diffusion datadd. Thus

d(φ, u, v) = g(φ, u, v) + dd(φ, u, v)

with
g(φ, u, v) =

∫

Lφ,u,v

e−Dµ(x,ζ)f(x)dx,
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Fig. 3. Geometrical parameters of the 3D parallel acquisition.

with

Dµ(x, ζ) =
∫ +∞

0

µ(x + tζ)dt

andLφ,u,v is the lineuθ +ve3 +Rζ, ζ = (− sin φ, cos φ, 0), f
is the 3D activity function andµ is the 3D attenuation function.

We suppose here thatdd can be estimated (by MC simulation
for example) and corrected. Thus ifµ is known, as in the
previous section,f can be reconstructed by slice by slice, i.e.,
at fixedv by the Novikov formula:

f(x) =
1
4
<

(
div

∫ 2π

0

θveDµ(x,ζ)
(
e−hHehgv

)
(φ, x · θ)dφ

)

wherex = (x1, x2, v), gv(φ, u) = g(φ, u, v), (note thatf(x) =
f(x1, x2, v) = fv(x1, x2)) θv = (cos φ, sin φ). As in section II,
h = 1

2 (I+iH)Rµ, H is the Hilbert transform andRµ is the 2D
attenuated Radon transform, i.e.,Rµfv(φ, u) = g(φ, u, v). In
our parallel geometry, the 3D reconstruction is thus classically
reduced to a 2D reconstruction at fixedv.

Just as in section II, we suppose that the attenuation map
µ0 can be estimated from CT scanner data [3] and that it only
needs to be registered to the emission datag (SPECT). More
precisely, we search a transformT from R3 to R3, e.g. a rigid
transform given by a rotation matrixρ (driven by 3 parameters)
and a translationt such that

µT (x)def=µ0(T (x))def=µ0(ρ(x) + t) = µ(x)

Just as in the previous section, we propose to estimatedT , thus
hereρ and t, from the DCC. They are here computed slice by
slice and accumulated:

min
ρ,t

∑
v

∑

k,m

(∫ 2π

0

∫

R
gv(φ, u)ume

1
2 (I+iH)RµT (φ,u)+ikφdudφ

)2

where0 ≤ m < k ≤ P , P integer being chosen small (here
equal to 2).

We show in figures 4 and 5 simulation results in 3D. We
have optimized the registration parameters, i.e. the 3D rotation
ρ and the 3D translationt (globally 6 parameters), such that
µρ,t(x) = µ0(ρ(x) + t) minimizes the DCC.



Fig. 4. 3D registration of the attenuation function and 3D reconstruction with
attenuation compensation ; slicev = .516. First line: left: model attenuation
mapµ0 (3D rotation of the true attenuation with rotation Euler angles in radian
equal to(π/64; π/80;−π/68)) ; right: activity reconstructed from the Nivikov
formula with the model attenuationµ0. Second line: left: true attenuation map
µ ; right: true activity.Third line: left: attenuation mapµT from the optimized
DCC ; rigt: activity reconstructed with the attenuationµT .

Our 3D activity phantom is composed by a spherical back-
ground activity of 125 on the centered sphere of radius .893
; three spheres of null activity, respectively centered at (.6,0,-
.285), (.48,.285,.57), (.48,-.285,.57), of respective radius .285,
.152 and .152 ; two high activity (1250) spheres respectively
centered on (-.228,-.38,.551) and (.532,.19,.323) and of respec-
tive radius .171 and .057.

Our 3D attenuation mapµ is composed by a centered spheri-
cal shell of radius .893 to .95 of attenuation 4 ; a centered sphere
of radius .893 of attenuation 2 ; three spheres of null attenuation
(the same as the spheres of null activity) respectively centered
at (.6,0,-.285),(.48,.285,.57), (.48,-.285,.57), of respective radius
.285, .152 and .152. The model attenuationµ0 is a rotation ofµ
with a matrix of Euler angles in radian(π/64; π/80;−π/68).

The figure 4 show the slicev = 0.516, thus close to the
center of the null activity spheres centered at (.48,.285,.57)
and (.48,-.285,.57). The figure 5 show the slicev = 0.42,

Fig. 5. 3D registration of the attenuation function and 3D reconstruction with
attenuation compensation ; slicev = .42. First line: left: model attenuation
map µ0; right: activity reconstructed from the Nivikov formula with the
Model attenuationµ0. Second line: left: true attenuation mapµ ; right: true
activity.Third line: left: attenuation mapµT from the optimized DCC ; rigt:
activity reconstructed with the attenuation mapµT .

thus close to the bottom of the null activity spheres centered
at (.48,.285,.57) and (.48,-.285,.57). In both figures, the DDC
minimization improves the registration of the attenuation, i.e.,
µρ,t is closer toµ than the original modelµ0 is. Using the
Nivikov formula, the reconstruction slices withµT = µρ,t

have less artefacts compare to thoses withµ0. In particular, in
figure 5, both null activity small discs at the bottom (sphere
cross sections) can be seen in the reconstruction with the
Novikov formula usingµρ,t whereas one disapears in the
reconstruction fromµ0.

IV. PERSPECTIVES AND DISCUSSION

A. SPECT diffusion correction with MC

Efficient Monte Carlo methods are used in SPECT associated
with statistical reconstruction techniques to compensate for
scatter, see [2]. In our work, we could use a Monte Carlo
approach only for the scattering estimation, in order to correct



the data before the DCC computation. We tested a Monte Carlo
simulator based on the GATE plateform (GEANT4 Application
for Tomographic Emmission), itself based on the GEANT4,
see [6], [11]. GEANT4, developped by the nuclear science
community, offers general codes of particule simulations. The
GATE package is dedicated to tomography. It is used for the
simulation of SPECT (source, attenuation, gamma-camera, etc.)
Within the simulation, we can separate the direct contribution
from the scattering part. In the figure 6 we show the phantom
that we have used and the MC simulations obtained with GATE.

Fig. 6. First line: two views of our Phantom composed by a spherical shell
of bone attenuation, inside of the sphere is water with relatively low emission
of 99mTC (5, 4106 Bq but only one second of activity is simulated). We have
also three balls of air with no emmission and two balls with high emmision (1
250 Bq/mm3). The attenuation value are taken from the GEANT4 data base.
Second line. left: datad ; center: diffusiondd, right: projection datag with
diffusion correction simulations of raw datad (left), corresponding scatter data
dd (center) and corrected datag (projection at angleφ = 0).

B. MC and DCC cooperation for SPECT reconstruction

Our idea is to estimate the activity from SPECT data (roughly
corrected from diffusion) and an initial registration of CT
to SPECT. Then we want to correct for the diffusion with
MC simulations. From the corrected data we improve the
registration thanks to the DCC. We iterate on that scheme
of estimation of the activity, prediction and correction of the
diffusion with MC, registration improvement with the DCC.
The major practical interest of this approach is that it does not
need dedicated integrated SPECT/CT systems but only classical
imaging systems (SPECT and CT).

We propose in figure 7 an iterative algorithm in order to
reconstruct an activity mapf from emission SPECT measuresg
and an attenuation CT mapµ0. We assume that we have a prior
idea of the rigid transformT1 which must be applied on the
attenuation map in order to register the activity and attenuation
maps. It is then possible to reconstruct a first activity mapf1

from the registrated attenuationµ1 = µ0◦T1 and from the basi-
cally corrected diffusion datag1, by inversion of the attenuated
Radon transform. The MC method can simulate diffusion data
dd,2 from f1 andµ1. From new corrected datag2 = d− dd,2,
the DCC allow to estimate a new rigid transfomationT2. A

new activity map is estimated fromµ2 = µ0 ◦T2 andg2 by the
inversion of the attenuated Radon transform, etc. The algorithm
stop whenT does not change significantly.

The perspective of our work is to develop and test such
an iterative method coupling MC simulations and DCC for
SPECT/CT registration and SPECT imaging improvement
based on this algorithm.
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Fig. 7. Scheme of our algorithm. IRT is the Inversion of the attenuated Radon
Transform (with the Novikov formula or more realistically with algebraic
technics including geometrical and partial volume effects), MC is a Monte
Carlo simulator, DCC is the Data Consistency Conditions optimization method.
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