
COMPOSITE LIKELIHOOD ESTIMATION FOR MULTIVARIATE MIXED POISSON
DISTRIBUTIONS

Florent Chatelain and Jean-Yves Tourneret

IRIT/ENSEEIHT/T́eSA, 2 rue Charles Camichel, BP 7122, 31071 Toulouse cedex 7, France
florent.chatelain@tesa.prd.fr, jean-yves.tourneret@tesa.prd.fr,

ABSTRACT

This paper addresses the problem of estimating the param-
eters of multivariate mixed Poisson distributions. The clas-
sical maximum likelihood approach cannot be used for such
distributions since they cannot be expressed in simple closed-
form. This paper studies an estimation strategy based on
the maximization of a so-called composite likelihood crite-
rion. This strategy is compared to a more classical estimator
based on the method of moments.

1. INTRODUCTION

Univariate mixed Poisson distributions have received much
attention in image processing applications (see for instance
[1], [2] and references therein). These applications include
active imaging, where the image is obtained from a scene il-
luminated with laser light [3], or astronomy, where low-flux
images are recorded by using photocounting cameras [2]. A
univariate mixed Poisson distribution is the distribution of
a random variableN such that the conditional distribution
of N |λ is a Poisson distribution with parameterλ (denoted
asN |λ ∼ P(λ)). The parameterλ is also a random vari-
able (called intensity) whose distribution is referred to as
structure distribution [1, p. 3] or mixing distribution. When
λ has an absolutely continuous distribution defined onR+

(whose probability density function is denoted asp(λ)), the
probability masses ofN can be written:

Pr(N = k) =
∫ ∞

0

Pr(N = k|λ)f(λ)dλ,

=
∫ ∞

0

λk

k!
exp (−λ)f(λ)dλ. (1)

Multivariate extensions of mixed Poisson distributions are
naturally constructed from a joint intensity distribution
p(λ1, ..., λd) defined onRd

+. The corresponding masses can
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be computed as follows:

Pr(N = k) =
∫
· · ·
∫

Rd
+

d∏
`=1

(λ`)k`

k`!
exp (−λ`)f(λ)dλ,

(2)
wherek = (k1, ..., kd) andλ = (λ1, ..., λd). Some prop-
erties of multivariate mixed Poisson distributions (MMPDs)
have been recently reported in [4]. In particular, conditions
ensuring that MMPDs belong to an exponential family have
been derived. This result is important since the maximum
likelihood estimator is known to have interesting properties
when the observations have a distribution belonging to an
exponential family. Unfortunately, conditions on the mix-
ing density ensuring that MMPDs belong to an exponential
family are generally too restrictive. This paper studies a
composite likelihood approach to estimate the parameters
of MMPDs when the mixing distribution is a multivariate
Gamma distribution.
This paper is organized as follows. Section2 recalls some
important results on multivariate mixed Poisson distribu-
tions. The main properties of the composite likelihood es-
timator are explained in section3. Simulation results and
conclusions are presented in sections4 and5.

2. MMPDS GENERATED BY GAMMA
INTENSITIES

2.1. Multivariate Gamma Distributions

A polynomialP (z) with respect toz = (z1, . . . , zd) is said
to be affine if the one variable polynomialzj 7→ P (z) can
be writtenAzj + B (for any j = 1, . . . , d), whereA and
B are polynomials with respect to thezi’s with i 6= j. For
any q ≥ 0 and for any affine polynomialP (z), a multi-
variate Gamma distribution onRd

+ with shape parameterq
and scale parameterP (z) (denoted asγq,P ) is defined by
its Laplace transform [5]:

ψγq,P
(z) = [P (z)]−q, (3)

on an appropriate domain of existence (note that the affine
polynomial has to satisfy the conditionP (0) = 1). De-



termining necessary and sufficient conditions on the pair
(q, P ) such thatγq,P exist is a difficult problem. The reader
is invited to look at [5] for more details.

This distribution has been used intensively in optics [2]
or image processing [3]. Indeed, the complex wave-front
amplitude is generally modeled as a zero mean circular Gaus-
sian vector in these applications. Consequently, the vector
containing the square modulus of the complex amplitudes
is distributed according to multivariate Gamma distribution
(with q = −1).

2.2. Negative multinomial distributions

For anyq ≥ 0 and for any affine polynomialP (z), a nega-
tive multinomial distributionN ∼ NMq,P onNd is defined
by its generating function [6]:

E

(
d∏

k=1

zNk

k

)
= [P (z)]−q, (4)

with the obvious conditionP (1) = 1. Determining neces-
sary and sufficient conditions on the pair(q, P ) such that
NMq,P do exist is a difficult problem (see [6] for more de-
tails). Note that, for any affine polynomialP ,

P1(z1, . . . , zd) = P (a1z1 + b1, . . . , adzd + bd)

is also an affine polynomial, for any real numbersai’s and
bi’s.

2.3. MMPDs generated by multivariate Gamma distri-
butions

The moment generating function of an MMPDN expresses
as:

E

(
d∏

k=1

zNk

k

)
= E

(
d∏

k=1

E(zNk

k |λk)

)
,

= ψλ(z1 − 1, . . . , zd − 1),
= ψλ(z − 1), (5)

whereψλ(z) is the Laplace transform of the intensity dis-
tribution. Eq.’s (3,4,5) show that the MMPDs associated to
the Gamma distributionsγq,P are thenegative multinomial
distributions NMq,P1 with P1(z) = P (z − 1). The un-
known parameter vector associated to these negative multi-
nomial distributions will be denoted asθ = (q, p), where
q is the shape parameter of the intensity Gamma distribu-
tion andp is a vector containing all coefficients of the affine
polynomialP (z). As an example, ford = 2, the polyno-
mial P can be written as

P (z) = 1 + p1z1 + p2z2 + p12z1z2,

with p = (p1, p2, p12)T .

3. COMPOSITE LIKELIHOOD ESTIMATOR

A composite likelihood is a combination of valid likelihood
associated to marginal or conditional events. The concept
of composite likelihood has been widely studied in the lit-
erature (see [7], [8] and references therein) since the sem-
inal paper of Lindsay [9]. Usual composite likelihoods in-
clude the marginal likelihood, the pairwise likelihood [9]
and the Besag’s pseudolikelihood [10]. The composite like-
lihood estimator is obtained by maximizing the correspond-
ing composite likelihood. The advantage of using compos-
ite likelihood instead of standard likelihood is to reduce the
computational complexity of the optimization procedure.
As a consequence, it allows to handle very complex mod-
els, even if the full likelihood cannot be expressed in closed
form. This is the case when multivariate mixed Poisson dis-
tributions are studied since the joint masses Pr(N = k)
cannot be generally computed easily by using (2). This sec-
tion studies a composite likelihood estimator based on the
pairwise likelihood of an MMPD governed by a multivari-
ate Gamma distribution.

3.1. Definition

Considern time seriesN = (N (1), . . . , N (k)), whereN (i)

is distributed according to a MMPD defined onRd. The
maximum likelihood estimator of the unknown parameters
θ = (q, pij) (wherepij are the coefficients of the polyno-
mial P ) requires to optimize the masses of a multinomial
distribution defined by its moment generating function (5).
This problem is complicated since it is difficult to obtain
a tractable expression of the masses Pr(N = k) from (5).
As an alternative, we consider the log-likelihood associated
with pairwise(N i

j , N
i
l ) (corresponding to theith time se-

ries)
lj,li (θ) = log Pr(N i

j = ki
j , N

i
l = ki

l).

The composite log-likelihood for theith time series is de-
fined as follows

li(N (i); θ) =
∑

1≤j<k≤n

wj,kl
j,k
i (θ),

wherewj,l is an appropriate weight for the pair(Nj , Nl).
The composite log-likelihood associated to then time series
Yn , calledpairwise log-likelihood, can then be expressed as

l(N ; θ) =
n∑

i=1

li(Y (i); θ). (6)

This paper proposes to estimate the unknown parameter vec-
tor θ of an MMPD with moment generating function (5) by
maximizing the pairwise log-likelihood (6).
Note that other composite log-likelihood functions (for the
ith time series), have been considered in the statistical liter-
ature:



• The Marginal Loglikelihood

lmarg
i (N (i); θ) =

∑
1≤j≤n

wi log Pr(N i
j = ki

j),

wherewj is a suitable weight for thejth component
N i

j . This composite log-likelihood is the product of
univariate marginal distributions. Consequently, it is
generally easy to compute. However, such distribu-
tion does not contain any information regarding the
covariances ofNj andNl. Thus, it does not seem
interesting for our problem.

• The Pseudo Loglikelihood

Another variety of composite log-likelihood, often re-
ferred to asBesag’s pseudologlikelihoodis defined
by:

lcond
i (N (i); θ) =

∑
1≤j≤n

wi log Pr(N i
j = ki

j |N i
[j]),

whereN i
[j] denote all the components ofN i except

the jth one. The probability Pr(N i
j = ki

j |N i
[j]) pro-

vides the distribution of thejth component ofN con-
ditioned upon the others components ofN (this prob-
ability is weighted by wj). This composite
log-likelihood function has shown interesting prop-
erties for Markov random fields. However, its expres-
sion in the case of MMPDs is more complicated than
the pairwise log-likelihood.

As explained above, the choice of a composite likelihood for
a practical application is generally motivated by two points:
1) the composite likelihood has to depend on the parame-
ters to be estimated, 2) the computational complexity corre-
sponding to the composite likelihood should be as reduced
as possible.

3.2. Properties

The derivative of a composite likelihood is called a compos-
ite score function and is denoted by

U(N ; θ) =
∂l(N ; θ)
∂θ

.

The composite likelihood estimator is classically obtained
by solving the following estimating equations:

U(N ; θ) = 0.

It is well known that these equations yield a consistent es-
timator of the unknown parameter vectorθ, under appro-
priate regularity conditions and provided of course that the
pairwise log-likelihood depends onθ [11]. Moreover the re-
sulting estimator is asymptotically normal with meanθ and
covariance matrix

1

n
E

(
∂U(N ; θ)

∂θ

)−1

E
(
U(N ; θ)UT (N ; θ)

)
E

(
∂U(N ; θ)

∂θ

)−T

.

These properties result from the structure of the composite
score function which is a linear combination of score func-
tions associated with valid log-likelihoods [7, 8, 9, 10].

4. SIMULATION RESULTS

Many simulations have been conducted to validate the pre-
vious theoretical results. This section presents some exper-
iments obtained with an intensity vectorλ distributed ac-
cording to a multivariate Gamma distribution. The covari-
ances between the different components ofλ have been ad-
justed as follows:

cov(λk, λl) ∝ ρ|k−l|, (7)

where∝ means proportional to. This covariance structure
is well suited to spatial data since the covariance between
different observations vanishes when the distance between
these observations increases. This parametrization has also
the advantage to require only one unknown parameterρ.
Generation of intensities
The generation of the intensities has been performed as fol-
lows:

• simulateq independent multivariate Gaussian vectors
of Rd denoted asX1, . . . , Xq with means0d and the
following d× d covariance matrix:

C = (ci,j)1≤i,j≤d =
(
ρ
|i−j|

2

)
1≤i,j≤d

,

• compute thekth component of the intensity vector as
λk = 1

q

∑
1≤i≤q(X

k
i )2, whereXk

i is thekth compo-
nent ofXi.

It is well known that the random vectorλ = (λ1, . . . , λd)
obeys a multivariate Gamma distribution whose marginals
are univariate Gamma distributionsγ1/ξ,1/ξ whereξ = 2

q .
Moreover, the covariance matrix ofλ can be computed as
follows:

E(λkλl) =
1
q2

∑
1≤i≤p

∑
1≤j≤p

E((Xk
i )2(X l

j)
2).

The independence between vectorsX1, . . . , Xq yields

E((Xk
i )2(X l

j)
2) = E((Xk

i )2)E((X l
j)

2) = 1, ∀ i 6= j.

Moreover,

E((Xk
i )2(X l

i)
2)=2E(Xk

i X
l
i)E(Xk

i X
l
i) + E((Xk

i )2)E((X l
i)

2),
=2ρ|k−l| + 1,

for 1 ≤ i ≤ q. The covariances of(λk, λl) can be finally
expressed as:

cov(λk, λl) =
2
q
ρ|k−l| = ξρ|k−l|.



This result is in good agreement with (7).
Generation of the MMPDs
It is then possible to generate the MMPD vectorN condi-
tionally uponλ, asN |λ ∼ P(λ). It is important to note
that the distribution ofN is governed by only two parame-
tersξ andρ.

4.1. Marginal Distribution of (Ni, Nj)

The MMPD ofN is a negative multinomial distribution (as
shown in section 2.2). As a consequence, the marginal dis-
tributions of the pairs(Ni, Nj) are negative binomial distri-
butions whose moment generating functions can be written:

E
(
zNi
i z

Nj

j

)
=
[

(1− a)(1− b)− c

1− azi − bzj + (ab− c)zizj

]−p

. (8)

Note that the parametersp, a, b, c (of R+) have to satisfy
the constraintc ≤ (1−a)(1− b). By expanding into Taylor
series the right hand term of (8), the masses of(Ni, Nj) can
be expressed in closed form as:

Pr(Ni = m,Nj = n) = ambn((1− a)(1− b)− c)p

×
min(m,n)∑

k=0

Ck
q+k−1C

m−k
q+m−1C

n−k
q+n−1

( c
ab

)k

. (9)

The model parametersa, b, c andp can then be expressed as
a function ofρ andξ:

a = b =
ξ + ξ2(1− ρ|i−j|)

1 + 2ξ + ξ2(1− ρ|i−j|)
,

c =
ξ2ρ|i−j|(

1 + 2ξ + ξ2(1− ρ|i−j|)
)2 , p =

1
ξ

4.2. Parameter Estimation

Eq. (9) shows that the marginal distribution of(Ni, Nj) de-
pends on the model parametersξ andρ via a, b, c and p.
As a consequence, the composite pairwise log-likelihood
(6) seems to be interesting to estimate the parameters of
the MMPD associated toN . Note again that the proper-
ties given in section 3.2 (including consistency and asymp-
totic normality) are satisfied for MMPDs. The simulations
presented in this paper have been obtained with uniform
weightsωi = 1, ∀i = 1, ..., n, so that all pairs(Ni, Nj)
uniformly contribute to the composite likelihood. How-
ever, other strategies might also also be interesting. For
instance, appropriate weights could be chosen in order to
mitigate the influence of pairs between non-neighboring ob-
servations (which should be less informative in the frame-
work of spatial data). This strategy might reduce the op-
timization complexity. The optimization procedure used to
minimize the negative composite log-likelihood is the direct

geometrical Nelder Mead Simplex method (MATLAB func-
tion fminsearch.m) . It is important to note that this method
does not require costly gradient computations.
In order to appreciate the interest of the proposed composite
likelihood method, the unknown parametersξ andρ have
also been estimated by the classical method of moments.
This method is based on the following equations:

var(Ni) = 1 + ξ, ∀ 1 ≤ i ≤ d,

cov(Ni, Nj) = ρ|i−j|ξ, ∀ 1 ≤ i 6= j ≤ d.

The first equation allows to estimateξ whereas the parame-
terρ can be obtained by using the covariances cov(Ni, Nj).
Note that several methods have been implemented to esti-
mateρ. Methods based on weighted log-log regressions
do not yield better estimation than estimates constructed
from the lag-one pairwise. This can be explained by the
fact that non-neighboring observations are less informative
in our model. As a result, giving too much importance to
non-neighboring pairwise leads to bad estimations.
The first simulations show the mean square errors (MSEs)
of the estimated parametersξ andρ for two different corre-
lation structures (ρ = 0.5 andρ = 0.8) as a function of the
number of time seriesn. The number of Monte Carlo runs
is 50 for figures 1 and 2 and500 for figures 3 and 4. The
other parameters for this example areρ = 0.8, q = 8 (hence
ξ = 1/4) andd = 12. The triangle curve corresponds to the
estimator of moments whereas the circle curve corresponds
to the composite likelihood estimator. These figures show
the interest of the composite likelihood approach, which is
much more efficient for this problem than the moment meth-
ods, especially for small values ofn (number of time series).

Figures 5 and 6 compare the theoretical asymptotic vari-
ances of the composite likelihood estimates (provided in
section 3.2) with the estimated variances (obtained from50
Monte Carlo runs). The results are clearly in good agree-
ment.
The exact and estimated distributions of the estimatesρ̂ and
ξ̂ are displayed in figures 7 and 8. The histograms have been
obtained from2000 Monte Carlo runs (the other parameters
aren = 5000 andρ = 0.5). These figures show that the
asymptotic distribution given in section3.2 is valid forn =
5000.

5. CONCLUSIONS

This paper has studied a new strategy for estimating the pa-
rameters of multivariate mixed Poisson distributions (MM-
PDs). The proposed methodology is based on the maxi-
mization of an appropriate composite loglikelihood crite-
rion. Simulation results have shown that this method outper-
forms the classical method of moments for MMPDs. Future



works include 1) generalisation of the composite likelihood
approach to more sophisticated structures (e.g. by assuming
thatX1, . . . , Xq are autoregressive sequences) and 2) com-
parison with a weighted non linear least squares approach.
The application of the proposed composite likelihood esti-
mation strategy to real images is also under investigation.

Fig. 1. log MSEs for parameterξ.

Fig. 2. log MSEs for parameterρ.
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eters for detection in low-flux coherent images,”Optical Let-
ters, vol. 28, pp. 81–83, Jan. 2003.

[4] A. Ferrari, G. Letac, and J.-Y. Tourneret, “Multivariate
mixed Poisson distributions,” inEUSIPCO-04(F. Hlawatsch,
G. Matz, M. Rupp, and B. Wistawel, eds.), (Vienna, Austria),
pp. 1067–1070, elsevier, Sept. 2004.

[5] P. Bernardoff, “Which multivariate Gamma distributions are
infinitely divisible?,”Bernoulli, to be published.

[6] P. Bernardoff, “Which negative multinomial distributions are
infinitely divisible?,” Bernoulli, vol. 9, pp. 877–893, Dec.
2003.

[7] D. R. Cox and N. Reid, “A note on pseudolikelihood con-
structed from marginal densities,” tech. rep., available at
http://www.utstat.toronto.edu/Reid/research.html, 2003.

[8] Y. Zhao and H. Joe, “Composite likelihood estimation in
multivariate data analysis,”The Canadian Journal of Statis-
tics, vol. 33, no. 3, p. to appear, 2005.

[9] B. G. Lindsay, “Composite likelihood methods,”Contem-
pory Mathematics, vol. 50, pp. 221–239, 1988.

Fig. 3. log MSEs for parameterξ.

Fig. 4. log MSEs for parameterρ.



[10] J. Besag, “Spatial iteraction and the statistical analysis of lat-
tice systems (with discussion),”J. R. Statist. Soc., vol. B36,
pp. 192–236, 1974.

[11] V. P. Godambe and C. C. Heyde, “Quasi-likelihood and opti-
mal estimation,”Int. Statist. Rev., vol. 55, pp. 231–234, 1987.

Fig. 5. Asymptotic variance for parameterξ.

Fig. 6. Asymptotic variance for parameterρ.

Fig. 7. Estimated and asymptotic distributions ofξ̂ with
99% confidence intervals.

Fig. 8. Estimated and asymptotic distributions ofρ̂ with
99% confidence intervals.


