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ABSTRACT

This paper shows that the joint distribution of polarimet-
ric intensity images is a multivariate gamma distribution
in the case of coherent illumination with fully developed
speckle. The parameters of this gamma distribution can
be estimated according to the maximum likelihood (ML)
principle. Different estimators depending on the number of
available polarimetric images are studied. These estimators
provide different ways of estimating the degree of polariza-
tion (DoP) associated to each pixel of the image. A per-
formance comparison with estimators based on methods of
moments shows the interest of the ML method for estimat-
ing the DoP of polarimetric images.

1. INTRODUCTION

Polarimetric images provide information regarding the po-
larimetric nature of the light, which are not available with
classical intensity images. The acquisition of polarimetric
images is useful in many applications including medical im-
agery [1] or industrial vision [2]. The increasing interest in
this type of imagery is due to the fact that imaged objects
modify the polarimetric properties of the light. This mod-
ification is linked to the constitution of the objects present
in the scene. For example, metallic objects less depolarize
the incident light than plastics objects. A way to simply
characterize the capacity of the material to polarize or de-
polarize the light is to compute the scalar DoP [3]. This
study focusses on the estimation of the DoP when coherent
illumination is used and the speckle is fully developed.

Methods of moments have been recently proposed to es-
timate the DoP of polarimetric images using several inten-
sity images. In particular, it was shown that the DoP can be
estimated using two intensity images only [4]. This paper
studies new estimation strategies based on the ML princi-
ple. The first part of the paper shows that the joint dis-
tribution of polarimetric intensity images is a multivariate
gamma distribution. Different ML estimators of the param-
eters associated to this gamma distribution are then derived.

These estimators depend on the number of observed polari-
metric images. They provide different ways of estimating
the DoP of polarimetric images. The maximum likelihood
estimator (MLE) is known to have nice asymptotic proper-
ties (such as asymptotic unbiasedness, asymptotic efficiency
and asymptotic normality) under appropriate regularity con-
ditions. These properties make the MLE a benchmark to
which other suboptimal estimators can be compared. The
last part of the paper compares the performance of different
DoP estimators based on the ML method and methods of
moments.

This paper is organized as follows. Section 2 derives
the joint distribution of polarimetric images. The DoP of
polarimetric images is defined in Section 3. Section 4 stud-
ies ML estimators for the parameters of polarimetric images
and the associated DoP. Simulation results are presented in
Section 5.

2. STATISTICAL PROPERTIES OF
POLARIMETRIC IMAGES

The light can be described by a monochromatic electrical
field propagating in the eZ direction in an homogeneous and
isotropic medium at a given point r at time t

E(r, t) = [AX(r, t)eX + AY (r, t)eY ]e−i2πνt,

where ν is the vibration central frequency and AX(r, t),
AY (r, t) are the complex components of the so-called Jones
vector denoted as A = A(r, t). The state of polarization of
the light can be described by the random behavior of the
Jones vector through its covariance matrix

Γ =
(

E [AXA∗
X ] E [AXA∗

Y ]
E [AY A∗

X ] E [AY A∗
Y ]

)
=

(
a1 a2 + ia3

a2 − ia3 a4

)
,

(1)
where E[·] is the mathematical expectation and ∗ is the com-
plex conjugate. The covariance matrix Γ is a non negative
hermitic matrix whose diagonal terms are the intensity com-
ponents in the X and Y directions. The cross terms of Γ are
complex correlations between the Jones components. If we



assume a fully developed speckle, the Jones vector A is a
complex circular Gaussian vector whose probability density
function (pdf) can be written [3]

p(A) =
1

π2|Γ|
exp

(
−A†Γ−1A

)
, (2)

where |Γ| is the determinant of the matrix Γ and † denotes
the conjugate transpose operator. The different components
of the covariance matrix Γ can be classically estimated by
using four intensity images. The images I1 and I2 are ob-
tained by analyzing the light backscattered by the scene in
two orthogonal states of polarization. This is done by intro-
ducing a polarizer between the scene and the camera, which
is parallel or orthogonal to the incident light. The intensity
I3 is obtained by recording the light backscattered in the di-
rection oriented to 45o from the incident light, by modifying
the orientation of the polarizer. Finally the image I4 is ob-
tained by adding a quarter wave plate allowing to introduce
a phase difference of λ/4 in the previous configuration. As
a consequence, the four intensities are related to the compo-
nents of the Jones vector as follows:

I1 = |AX |2, I2 = |AY |2,

I3 =
1
2
|AX |2 +

1
2
|AY |2 + Re (AXA∗

Y ) ,

I4 =
1
2
|AX |2 +

1
2
|AY |2 + Im (AXA∗

Y ) .

(3)

This section derives the joint distribution of the intensity
vector I = (I1, I2, I3, I4)T . For this, it is interesting to
note that the matrix S = AA† is distributed according to a
complex Wishart distribution whose Laplace transform is:

LS(θ) = E{exp [−trace(Sθ)]} = |I2 + Γθ|−1, (4)

where I2 is the 2× 2 identity matrix and θ is a 2× 2 matrix
ensuring existence of L(θ). By using the following nota-
tions

S =
(

s1 s2 + is3

s2 − is3 s4

)
=

(
|AX |2 AXA∗

Y

AY A∗
X |AY |2

)
,

and

θ =
(

θ1 θ2 + iθ3

θ2 − iθ3 θ4

)
,

where (si, θi) ∈ R2, for i = 1, ..., 4, we easily obtain

trace(Sθ) = s1θ1 + 2s2θ2 + 2s3θ3 + s4θ4.

The intensity vector I is clearly linearly related to s =
(s1, ..., s4)T since

s = MI =


1 0 0 0

−1/2 −1/2 1 0
−1/2 −1/2 0 1

0 1 0 0

 I. (5)

Equations (4) and (5) allow us to obtain the Laplace trans-
form of the intensity vector:

LI(θ) = E

exp

−
4∑

j=1

θjIj

 =
1

P (θ)
, (6)

where P (θ) is the following affine polynomial1

P (θ) = 1+αT θ+k [2θ1θ2 + θ3θ4 + (θ1 + θ2)(θ3 + θ4)] ,

with

α =
[
a1, a4,

1
2
(a1 + 2a2 + a4),

1
2
(a1 + 2a3 + a4)

]T

,

k =
1
2
(a1a4 − a2

2 − a2
3).

As a consequence, the intensity vector I = (I1, I2, I3, I4)T

is distributed according to a multivariate gamma distribution
(MGD) with shape parameter q = 1 and scale parameter P
as defined in [5, 6]. Moreover, according to (6), the distri-
bution of the intensity vector I is fully characterized by the
parameter vector a = (a1, ..., a4)T .

3. DEGREE OF POLARIZATION

The DoP of a given pixel in a polarimetric image is defined
by [3, p. 134-136]

P 2 = 1−
4

[
a1a4 − (a2

2 + a2
3)

]
(a1 + a4)2

. (7)

It characterizes the state of polarization of the light. The
light is totally depolarized for P = 0, totally polarized for
P = 1 and partially polarized when P ∈ ]0, 1[. The es-
timation of P 2 is important in many practical applications.
Since only one realization of the random vector I is avail-
able for a given pixel, the images are supposed to be locally
stationary and ergodic. These assumptions allow us to build
estimates using several neighbor pixels belonging to a so-
called estimation window.

The next section studies estimators of the DoP based on
several vectors I1, . . . , In (belonging to the estimation win-
dow) distributed according an MGD with Laplace transform
LI(θ) defined in (6). These estimators are constructed from
estimates of the covariance matrix elements ai, i = 1, ..., 4.
Different estimators are studied depending on the number
of available polarimetric images, i.e. 2 or 4 polarimetric im-
ages. Developing estimation methods based on few images
is important to reduce the measurement acquisition time as
well as the cost of the imagery system, which has motivated
this study.

1A polynomial P (z) where z = (z1, . . . , zd) is affine if the one
variable polynomial zj 7→ P (z) can be written Azj + B (for any
j = 1, . . . , d), where A and B are polynomials with respect to the zi’s
for i 6= j.



4. ML METHOD

4.1. Using 4 Images

Straightforward computations using (3) show that the inten-
sity vector I belongs to a cone whose equation is:[

I3 −
I1 + I2

2

]2

+
[
I4 −

I1 + I2

2

]2

= I1I2.

Consequently, the distribution of I is singular and defined
on this cone. The distribution of I belongs to a natural ex-
ponential family (see appendix A for details). As a conse-
quence, the MLE of α = E[I] is [7]

α̂ML =
1
n

n∑
j=1

Ij .

The mean of the intensity vector is related to the vector a as
follows

α1 = E[I1] = a1, α3 = E[I3] =
1
2

(a1 + a4 + 2a2) ,

α2 = E[I2] = a4, α4 = E[I4] =
1
2

(a1 + a4 + 2a3) .

The functional invariance principle can then be used to de-
rive the MLE of a:

âML = Mα̂ML.

Using α̂ML = 1
n

∑n
j=1 Ij , it can be proved that the MLE of

a is unbiased and efficient providing an optimal estimation
of a. These MLEs are then plugged into (7) yielding the
following DoP estimator based on 4 polarimetric images:

P̂ 2
4 = 1−

4
[
â1â4 − (â2

2 + â2
3)

]
(â1 + â4)2

,

where âi is the ith component of the vector âML for i =
1, . . . , 4. The asymptotic variance of this estimator P̂ 2

4 can
be determined and will be given later (see (12)).

4.2. Using 2 images

A moment estimator of P 2 based on two intensity images
I1 and I2 was recently studied in [4]. This section derives a
new DoP estimator based on the MLE of I = (I1, I2)T . The
distribution of I can be obtained by its Laplace transform:

LI(θ) = E

exp

−
2∑

j=1

θjIj

 =
1

P (θ)
, (8)

where P (θ) = 1+α1θ1+α2θ2+2kθ1θ2 and θ = (θ1, θ2)T .
By recalling that α1 = a1, α2 = a4 and k = 1

2 (a1a4−a2
2−

a2
3), it can be seen that the distribution of I is parametrized

by three parameters a1, a4 and r = a2
2 + a2

3. As a conse-
quence, one can think of estimating these three parameters
by using the ML method. The pdf of the bivariate gamma
distribution having the Laplace transform LI(θ) has been
defined in [6]:

p(I) =
1
2k

exp
(
−a4

2k
I1 −

a1

2k
I2

)
f1(νI1I2)IR2

+
(I), (9)

with ν = 1
4k2 (a1a4−2k). By differentiating the log-likelihood

associated to this pdf with respect to a1, a4 and r, we obtain:(
â1

â4

)
=

(
1 0
0 1

) (
α̂1

α̂2

)
,

with α̂l = 1
n

∑n
j=1 Ij

l for l = 1, 2. It can be shown that the
parameter r can be estimated by computing the root of the
following nonlinear equation:

â1â4 − r − 1
n

n∑
j=1

Ij
1Ij

2

f2

(
rIj

1Ij
2

(ba1ba4−r)2

)
f1

(
rIj

1Ij
2

(ba1ba4−r)2

) = 0. (10)

The root of this non-linear equation can be computed using
a Newton-Raphson procedure. Note that the convergence of
this numerical procedure has been studied in [8] for specific
bivariate distributions. The estimates of a1, a4 and r are
then plugged into (7) yielding an estimate of the DoP based
on 2 polarimetric images:

P 2
2 = 1− 4 [â1â4 − r]

(â1 + â4)2
,

The asymptotic covariance matrix of the resulting estimator
of the unknown parameter vector η = (a1, a4, r)T can be
obtained from the asymptotically efficiency property of the
MLE under mild regularity conditions. Thus, the asymp-
totic covariance matrix of the MLE equals the Cramer Rao
Lower Bound (CRLB), which is defined as the inverse of
the following Fisher information matrix:

F2(η) = −E

[
∂2 log p(I;η)

∂η∂ηT

]
.

However, this computation is difficult because of the term
log f 1

2
appearing in the log-density. In such situation, it is

very usual to approximate the expectations by using Monte
Carlo methods. More specifically, this approach consists of
approximating the elements of the Fisher information ma-
trix (FIM) F2 (η) as follows

[F2 (η)]ij ' − 1
N

N∑
k=1

∂2 log p(xk)
∂ηi∂ηj

,

where xk is distributed according to a bivariate gamma dis-
tribution whose pdf is defined in (9) and N is the number of



Monte Carlo runs. The asymptotic variance of the estimator
P 2

2 is then obtained as follows:

var
(
P 2

2

)
= GT

2 F−1
2 G2,

where G2 is the gradient of the transformation from (a1, a4, r)

to P 2, i.e. G2 =
(

∂P 2

∂a1
, ∂P 2

∂a4
, ∂P 2

∂r

)T

.

5. METHOD OF MOMENTS

In order to appreciate the performance of the MLEs derived
above, this section studies estimators based on the classical
method of moments.

5.1. Using 4 images

When four polarimetric images are available, the moment
estimator of a denoted as âMo is also the MLE derived in
section 4.1:

âMo = Mα̂Mo,

where α̂Mom = 1
n

∑n
j=1 Ij . Therefore the covariance ma-

trix of âMo = âML is:

cov (âMo) =
1
n

Mcov (I) MT ,

where cov (I) is the covariance matrix of I . The matrix
cov (I) can be classically computed by differentiating the
Laplace transform of the vector I (6). Straightforward com-
putations lead to the following result:

cov (âMo) =
1
n


a2
1 a1a2 a1a3 a2

2 + a2
3

a1a2 c2,2 a2a3 a4a2

a1a3 a2a3 c3,3 a4a3

a2
2 + a2

3 a4a2 a4a3 a2
4

, (11)

with c2,2 = (a1a4 + a2
2 − a2

3)/2 and c3,3 = (a1a4 − a2
2 +

a2
3)/2. As a consequence, the asymptotic variance of the

DoP estimator P̂ 2
4 is:

varA

(
P̂ 2

4

)
= GT

4 cov (âMo) G4 =
2(1− P 2)2P 2

n
, (12)

where G4 is the gradient of the transformation from a to
P 2. Note that the asymptotic variance of P̂ 2

4 depends on the
value of the parameters a1, a2, a3 and a4 only through the
squared DoP P 2. Note also that the asymptotic variance of
P̂ 2

4 reaches its maximum for P 2 = 1/3.

5.2. Using 2 images

When the intensity vector is I = (I1, I2)T , the moment
estimators of a1, a4 and r = a2

2 + a2
3 can be obtained from

the following set of equations:

E [I1] = a1, E [I2] = a4, (13)
E [I1I2] = a1a4 + r, (14)

The estimators of a1 and a4 are directly related to (13):

(a1, a4)
T = (â1, â4)T ,

whereas the estimator of r obtained from (??) is

rMo =
1
n

n∑
j=1

Ij
1Ij

2 − â1â4

The asymptotic covariance matrix of the moment estimator
vector η

2,Mo
= (â1, â4, rMo)

T can be easily computed as:

varA

(
η

2,Mo

)
=

1
n

 a2
1 r 2a1r
r a2

4 2a4r
2a1 2a4r a2

1a
2
4 + 4a1a4r + 3r2

 .

The following DoP estimator is finally obtained

P 2
2 Mo = 1− 4 [â1â4 − rMo)]

(â1 + â4)2
.

The asymptotic variance of P 2
2 Mo is expressed as:

varA
(
P 2

2 Mo

)
= GT

2 varA

(
η

2,Mo

)
G2,

=
2(1− P 2)2(P 2 + 1/2)

n
+

64a1a4r

n(a1 + a4)4
,

where G2 is the gradient of the transformation from (a1, a4, r)
to P 2, which has been defined previously.

6. SIMULATION RESULTS

Several experiments have been conducted to evaluate the
performance of the estimators derived in this paper. The
simulations presented here have been obtained with polari-
metric images with 9 different DoPs reported in Table 1.
The corresponding entries of the covariance matrices of the
Jones vector (1), denoted as Γi for i ∈ {0, . . . , 8}, are given
in Table 2. The sample size is n = 15 × 15 in all simu-
lations. This corresponds to a squared observation window
containing 225 pixels.

Table 1. Polarimetric image DoPs.
P 2

0 P 2
1 P 2

2 P 2
3 P 2

4 P 2
5 P 2

6 P 2
7 P 2

8

0 0.2 0.3 0.4 0.5 0.6 0.8 0.9 0.99

Figure 1 shows the log mean square errors (MSEs) of
the DoP estimates using two images by the ML method
(plus markers) and the method of moments (cross markers).



Table 2. Covariance matrices of the Jones vector.
Γ0 Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7 Γ8

a1 2 15 1 16 82 18 30 2 1.25
a2 0 0.2 0.4 0 0 7 16 0.6 0

a3 0 0.5
√

0.14 0 13 8 8 1.8 5.5
a4 2 6 1 3.6 17 11 14 2 26

These MSEs can be compared to those corresponding to 4
images (diamond markers). The loss of performance ob-
tained when observing two polarimetric images instead of
four can be clearly observed (note again that the ML method
and the method of moments coincide when 4 images are ob-
served, as explained in section 5.1). The theoretical asymp-
totic log MSEs of the different estimators are also depicted.
The asymptotic MSEs of the different estimators match per-
fectly with their estimates, except for the MLE associated to
the matrices Γ0, Γ1 and Γ3. This can be explained for ma-
trices Γ0 and Γ3 by noting that the parameter r = a2

2 + a2
3

equals zero in these cases. In other words, r belongs to
the boundary of its definition domain, preventing the use of
its theoretical asymptotic variance [9, chap. 18]. The dif-
ference between estimated and theoretical results regarding
the matrix Γ1 can be explained by noting that the parame-
ter r is close to 0. In this case, the asymptotic MSE of the
estimator is not reached for this sample size (a better match
would be obtained for a larger sample size). A last comment
resulting from Fig. 1 is that all estimators reach their best
performance for large values of the DoP.

Fig. 1. logMSEs of the DoP estimates using 2 and 4 images
vs P 2 (n = 15× 15).

7. CONCLUSION

This paper showed that the joint distribution of intensity im-
ages is a multivarate gamma distribution. This distribution
was used to derive ML estimators of the DoP associated to
multiple polarimetric images. Simulation results indicated
that the DoP can be estimated with two images without sig-
nificant loss of performance. An extension of this work to
low-flux images corrupted by Poisson noise is currently un-
der investigation.

A. A NATURAL EXPONENTIAL FAMILY

Assume that the Jones vector A is complex circular Gaus-
sian with pdf (2). The vector

Ar = [<(AX),<(AY ),=(AX),=(AY )]T ∈ R4,

is distributed according to a 4 dimensional zero-mean gaus-
sian distribution with covariance matrix:

Σ =
1

2

0BB@
a1 a2 0 −a3

a2 a4 a3 0
0 a3 a1 a2

−a3 0 a2 a4

1CCA .

The pdf of Ar can then be written as:

fAr (a) =

√
|η|

π2
exp

[
−tr

(
ηaaT

)]
, (15)

where η = 1
2Σ−1. Consequently, the rank one matrix U =

AAT ∈ R4×4 has the following pdf:

fU (u) =

√
|η|

π2
exp [tr (−ηu)]

IΩU
(u)

u2
1,1

, (16)

where ui,j are the entries of the matrix u for 1 ≤ i, j ≤ 4
and ΩU = {u ∈ R4×4|u1,1 > 0, ui,ju1,1 − ui,1uj,1 =
0, 1 ≤ i, j ≤ 4}. Looking at (16), we observe that U
belongs to a natural exponential family of dimension 4 gen-
erated by the measure µ(du) = IΩU

(u)du

π2u2
1,1

with natural pa-
rameter η. Thus the distribution of I also belongs to a natu-
ral exponential family, since I and U are related by a one-
to-one linear transformation.
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