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_Abstract—This paper evaluates the potential interest of using is modeled by local rigid displacements [4]. The key element
bivariate gamma distributions for image registration and change of the image registration problem is the estimation of the
detection. The first part of the paper studies estimators for .. alation coefficient between the images. This is usually

the parameters of bivariate gamma distributions based on the . - . . . .
maximum  likelihood principle and the method of moments. done with an estimation window in the neighborhood of each

The performance of both methods are Compared in terms of piXeI. In Order to estimate the |Oca| I’Igld diSplacementS W|th a
estimated mean square errors and theoretical asymptotic vari- good geometric resolution, one needs the smallest estimation
ances. The mutual information is a classical similarity measure window. However, this leads to estimations which may not be
which can be used for image registration or change detection. robust enough. In order to perform high quality estimations

The second part of the paper studies some properties of the ith N b f | to introd
mutual information for bivariate Gamma distributions. Image with a small humber of Samplés, we propose 1o Introauce

registration and change detection techniques based on bivariate @ priori knowledge about the image statistics. In the case
gamma distributions are finally investigated. Simulation results of power radar images, it is well known that the marginal

conducted on synthetic and real data are very encouraging. distributions of pixels are gamma distributions [5]. Therefore,
Bivariate gamma distributions are good candidates allowing us \Gps seem good candidates for the robust estimation of the
to develop new image registration algorithms and new change - - .
detectors. correlation coefﬁment_between radar images. _
The change detection problem can be defined as follows.
Consider two co-registered synthetic aperture radar (SAR)
intensity images/ and J acquired at two different datefg
andt;. Our objective is to produce a map representing the
| INTRODUCTION changes occurred in the scene bereen tﬁmgnql timet .
o T ) _ The final goal of a change detection analysis is to produce
The univariate gamma distribution is uniquely defined ig binary map corresponding to the two classesangeand
many statistical textbooks. However, extensions defining myye, change The problem can be decomposed into two steps:
tivariate gamma distributions (MGDs) are more controversia!) generation of a change image and 2) thresholding of the
For instance, a full chapter of [1] is devoted to this probler@hange image in order to produce the binary change map. The
(see also references therein). Most journal authors assume fiala|| detection performance will depend on both, the quality
a vectorx = (z1,...,74)" is distributed according to an gf the change image and the quality of the thresholding. In
MGD if the marginal distributions of; are univariate gamma thjs work, we choose to concentrate on the first step of the
distributions. However, the family of distributions SatiSfyin%rocedure, that is, the generation of an indicator of change for
this_condition is very large. In order to reduce the size o_f thesch pixel in the image. The change indicator can be obtained
family of MGDs, S. Bar Lev and P. Bernardoff recently definegy, computing the local correlation between both images, for
MGDs by the form of their moment generating function ogach pixel position. For interesting approaches in the field
Laplace transforms [2] [3]. The main contribution of thiyt ynsupervised change image thresholding, the reader can
paper is to evaluate these distributions as candidates for imagg io the works of Bruzzone and Fandez Prieto 6], [71,
registration and change detection. Bruzzone and Serpico [8] and Bazi et al. [9]. The change
Given two remote sensing images of the same sdBnejngicator can also be useful by itself. Indeed, the end user of
the reference, and, .the secondary image, 'Fhe reglstratlo% change map often wants, not only the binary information
problem can be dgfmed as _follows: determl_ne a geometyfyan after thresholding, but also an indicator of the change
transformationl” which maximizes the correlation coefﬂmentamp“tude_ In order to evaluate the quality of a change image
between imagé and the result of the transformatidho J. A ingependently of the choice of the thresholding algorithm, one
fine modeling of the geometric deformation is required for they, study the evolution of the probability of detection as a
estimation of the coordinates of every pixel of the referenggction of the probability of false alarm, when a sequence
image inside the secondary image. The geometric deformatign onstant thresholds is used for the whole image. As in

This work was supported by CNES under contract 2005/2561 and by dhe imag(? registration prpblem., a small e.Stimation WindOW.is
CNRS under MathSTIC Action No. 80/0244. required in order to obtain a high resolution detector, that is,

Index Terms— Multivariate gamma distributions, correlation
coefficient, mutual information, maximum likelihood, image reg-
istration, image change detection.



a detector being able to identify changes with a small spatBl Bivariate Gamma pdf

extent. Again, the introduction of a priori knowledge through optaining tractable expressions for the probability density
MGDs may improve the estimation accuracy when a sma||nction (pdf) of a MGD defined by (1) is a challenging

number of samples is used. problem. However, in the bivariate case, the problem is much

This paper is organized as follows. Section Il recalls sOmgmpler. Straightforward computations allow to obtain the
important results on MGDs. Section |l studies estimators %Ilowing density (see [1, p. 436] for a similar result)

the unknown parameters of a bivariate gamma distribution g—1 g1
(_BG_D). These estimators are based on the class_lcal maximum ) — exp (_pﬂl +p1$2> o : z Falczras)Ige (x),
likelihood method and method of moments. Section IV studies P12 pi2l (@) +
mterestlng propertps of the mutugl information for BGD_ herec = 2122212 and f,(z) is defined as follows

The application to image registration and change detection Piz

is discussed in section V. Conclusions are finally reported in > Sk
section VI. fo2) =) e 4
= kT (g +k)
[1. MULTIVARIATE GAMMA DISTRIBUTIONS Note that f,(z) is related to the confluent hypergeometric
A Definitions function (see [1, p. 462)).
. A polynom]aIP(z) with respect tax = (z1,..-, zt?) is affine C. BGD Moments
if the one variable polynomial; — P(z) can be writterdz;+ . i
B (foranyj = 1,...,d), where A and B are polynomials The Taylor series expansion of the Laplace transfgroan
with respect to thez;’s with i # j. A random vectorx = D€ written:
(z1,...,zq)" is distributed according to an MGD d&rl. with _ (=D
shape parametey and scale paramete? (denoted asx ~ (e, 22) = Z; W E [#7z5] 21 2. ®)
G(gq, P)) if its moment generating function (also called Laplace i
transform) is defined as follows [3]: The moments of a BGD can be obtained by differentiating (5).
, For instance, the mean and variancerp{denotedE|x;] and
Yg(q,p)(z) =E (67 Zizlmizi) = [P(z)] ", (1) var(x;) respectively) can be expressed as follows
whereq > 0 and P is an affine polynomial. It is important to E [x;] = qpi, var(z;) = qp?, (6)

note the following points: for ¢ = 1,2. Similarly, the covariance c@¥;, z2) and corre-

« the affine polynomial” has to satisfy appropriate condi-ation coefficient-(x1, ) of a BGD can be easily computed:
tions including P(0) = 1. In the general case, determin-

ing necessary and sufficient conditions on the pai?) ~ COV(z1,x2) = E[z122] — E[z1]E [22] = q(p1p2 — p12), (7)
such thatG(q, P) exist is a difficult problem. The reader (i, 29) = cov(zy, z2) _ pip2 — P12 ®)
is invited to look at [3] for more details, Lb2) = N o :

o by settingz; = 0 for j # ¢ in (1), we obtain the Laplace vartz)/var(zz) b
transform ofx;, which is clearly a gamma distribution
with shape parameterand scale parameter, wherep;
is the coefficient ofz; in P.

A BGD corresponds to the particular cage= 2 and is
defined by its moment generating function

It is important to note that for a known value ¢f a BGD
is fully characterized by = (E [4], E [z2], 7(x1,22)) which

will be denoted® = (m4, ma,r) in the remaining of the paper.
Indeed,@ and (p1, p2, p12) are obviously related by a one-to-
one transformation. Note also that the conditions (3) ensure

that the covariance and correlation coefficient of the couple

fd)(zl, z2) = (1 + p121 + p2zo +p122122)_q , (2) (.731,332) are both pOSitive.
_ ) - More computations allow to obtain a general formula for
with the following conditions the momentsE [z7°z%], for (m,n) € N2, of a BGD:
> 0, > 0, > 0, — > 0. 3 min (m,n)
P P2 P12 P1p2 — P12 ®3) o] — (@ ()" > (—=m)i(—n)i * o
In the bi-dimensional case, (3) are necessary and sufficiert 1 2 L2 gm gn (@)k k!l

conditions for (2) to be the moment generating function of h=0

a probability distribution defined oft, co[2. Note again that Where (a). is the Pochhammer symbol defined fy)o = 1
(2) implies that the marginal distributions ef and z, are an
“gamma distributions” (denoted as, ~ G(q,p1) and zy ~ (@1 = (a+k)(a)e =ala+1)...(a+k),

G(g,p2)) with the following densities: _ _ _
1 for any integerk (see [10, p. 256]). The mutual information

fip (o) = x; exp (_fJEi)HR (:) of a BGD is related to the moments gfr;z; andlog(x;) for
' L'(q)p{ ; o j =1, 2. Straightforward computations detailed in appendices
where Iz, (z;) is the indicator function defined oft), o] Iand Il yield the following results:
(g, (z;) = 1if 2; > 0, Ir, (z;) = 0 else), fori € {1,2}. B m;j
HereI'(-) is the usual gamma function defined in [10, p. 255]. Eflog(z;)] = ¥(q) +log o) (10)
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and where )

~ r q
fmyima T(q + )2 -1 -1 S TRy R
E[ T1T2|= mim2 (q+ 2) 2F1 —, Y q;Tr ], (11) (1 - T)Q T1x2
q I'(q)? 272

_ _ _ This is achieved by using a Newton-Raphson procedure initial-
wherey(z) = I"(z)/I'(z) is the digamma function andF\  jzed by the standard correlation coefficient estimator (defined
is the Gauss’s hypergeometric function (see [10, p. 555—566}}.(25))_ The convergence of the Newton-Raphson procedure

is generally obtained after few iterations.
I1l. PARAMETER ESTIMATION 2) Performance: The asymptotic properties of the ML

This section addresses the problem of estimating the (glimatorsmiw. andmay. can be easily derived from the
known parameter vectod from n independent vectors — Moments of the univariate gamma distributiogig;, p1) and
(x! x"), wherex’ = (i, 3) is distributed according to G(q,p2). These estimators are obviously unbiased, convergent

PRI

a BGD with parameter vectd. Note that the parameteris and efficient. However, the performance ofi. is more

assumed to be known here, as in most practical applicatiof§ficult to study. Of course, the MLE is known to be asymp-
However, this assumption could be relaxed. totically unbiased and asymptotically efficient, under mild

regularity conditions. Thus, the mean square error (MSE) of
) o the estimates can be approximated for large data records by the
A. Maximum Likelihood Method Cramer-Rao lower bound (CRLB). For unbiased estimators,
1) Principles: The maximum likelihood (ML) method canthe CRLBs of the unknown parameters, my andr can be
be applied in the bivariate casé £ 2) since a closed-form computed by inverting the Fisher information matrix, whose
expression of the density is availahlén this particular case, elements are defined by

after removing the terms which do not dependérthe log- 92 log fan (x)
likelihood function can be written as follows: [1(0);; =-E {6282913]’ (18)
2 _ Lt
I(x;0) = — nqlog (mymy) — Z % where 8 = (01,0,,03)T = (my,mq,7)T. However this
j=1 m;(1 =) 12) computation is difficult because of the tedoy f, appearing
n o in the log-likelihood. In such situation, it is very usual to
—nglog (1 —r) + Zlog fqlezias), approximate the expectations by using Monte Carlo methods.
i=1 More specifically, this approach consists of approximating the
wherec — mlmzq(ifr)z’ andz; = %Z?:ﬂ? is the sample elements of the Fisher information matidX ) as follows
mean ofz; for j = 1, 2. By differentiating the log-likelihood 1 X510 x
with respect tomy, mo andr, and by noting thatf/(z) = [1(8)];; ~ N Z agef;g, k), (19)
fq+1(2), the following set of equations is obtained k=1 v

wherex; is distributed according to the BGD of densityp

nqzT; — r SmiA =0, ic (1,2}, (13) and N is the number of Monte Carlo runs.
1-— (1-7r)2
ngTy ngry ng — L+r A =0, (14) B- Method of Moments
(I =r)my (1 =r)ms 1-7) 1) Principles: This section briefly recalls the principle of
where the method of moments. Consider a functlop) : RM — R
1 " (eaiad) and the statisti,, of size L defined as:
A= (Zxﬁm%W) (15) Lo
mimy \ fq(cxiah) R Z h(x?), (20)
The maximum likelihood estimators (MLES) ef; andmy "=
are then easily obtained from these equations: where h(-) is usually chosen such that, is composed of
- B - B empirical moments. Denote as:
mime = L1, MamL = 22 (16)
£(6) = E[sn] = E[h(x")]. (21)

After replacingm; and mo by their MLEs in (14), we can
easily show that the MLE of is obtained by computing the The moment estimator @ is constructed as follows:
root r € [0, 1] of the following function .

[ [ g Ovo = g(sn)v (22)

glr)=r—1+ q Z%%M =0, (17) Wwhereg(f(0)) = 0. By considering the function
NI Ty \ fq(Cxlxh)

h(X) = (1'1,1'2, x%a‘r%vmle);

1The problem is much more complicated in the general case where
since there is no tractable expression for the MGD density. In this case,
coefficients of P can be estimated by maximizing an appropriate composi . 9 1 2 1 1
likelihood criterion such as thgairwise log-likelihood The reader is invited tfe(e) = [m1,mz,mi(1+q "), m3(1+q "), mima(1+rg™")].
to consult [11] for more details. (23)

the following result is obtained



The unknown parameteisn;, ma,r) can then be expressedwhere f(x1,.) and f(.,z2) are the marginal densities of the
as functions off(0) = (f1, fo, f3, f4, f5). For instance, the vectorx = (z1,22) and fop(x) is its joint pdf. This section

following relations are obtained shows that the mutual information of BGDs is related to
fs— fifa the correlation coefficient by a one-to-one transformation.
my = f1, ma = fa, r = 7 = —.  (24) Interesting approximations of this mutual information for
(fs = fi)(fa—15) 0 andr — 1 are also derived.

yielding the standard estimators:

ﬁl\lMO :Th 7/71\2M0 :EQa . . . .

S (2t — 7)) (@ — 7o) (25) A. Numerical Evaluation of the mutual information
Mo = i=1 , . . o
° Vo (@ —71)2 Y () — )2 By replacing the densitieg(z1,.), f(z2,.) and fap(x)

2) Performance: The asymptotic performance of the estiPy their analytical expressions, the following results can be

mator Gy can be derived by imitating the results of [12PPtained:

derived in the context of time series analysis. A key point

of these proofs is the assumptisn 3" s = £(#) which is Mq(p1; p2; p12)

verified herein by applying the strong law of large numbersto  _ ¢log (mpz) e (E [m]@ LE [xz]]?u) A

(20). As a result, the asymptotic MSE 6f, can be derived: Do I Do

lim nE[(Buo — 6)°] = G(O)Z(0)G(0)',  (26) + E{log [I'(q) fg(cz122)]}-

whereG () is the Jacobian matrix of the vectgf-) at point The first terms ofM, (p1, p2, p12) can be easily expressed as
s = f(6) and a function of@ by using the mean of a univariate gamma dis-

tribution given in (6). The mutual informatiof/, , D2,
2(0) = lim nE [(s, —s)(s, —s)"]. (27) 9 (6) ¢(p1,p2,D12)

oo can then be expressed as follows:
In the previous example, according to (24); R5 — R3 is M ) —glog(1—1) 2
=qlog(l —1r)—
defined as follows q\P1,P2,P12) =qlog 1—r 32)
— E {log [' : .
600 — (orvm——mnm ) g + E{log [[(q), (ezr2)]}
\/(373 —z1)(24 — 23) . .
_ N _ . However, a simple closed form expression fot =
The partial derivatives of, and g, with respe2ct tol’q:,Z; E {log [['(¢q) f,(cz122)]} cannot be obtained, requiring to use
1,...,5 are trivial. By denotingy = /(z3 — #7)(z4 — 23), a numerical procedure for its computation.
those ofg; can be expressed as The numerical evaluation of can be significantly simpli-
g3 vy x1(z4 — 23) (25 — T172) fied by noting that(z,,x2) and (az1, 8z2) have the same
BN - *7 + ~3 ’ mutual information for any«, 3) € R2. Indeed, this property
dgs _om . o (w3 — 22) (25 — 2122) implies the following result:
0wy Y o ’ P12
993 (m112 — 25) (T4 — 73) 29 Mqy(p1,p2;p12) = M, (LL)ZM(; (1,1,1=7), (33)
-2 = ) (29) P1P2
8563 2’}/3
Ogs _ (2172 — w5)(23 — 1) where 1 — r = 22 ¢ [0,1]. As a consequence,
Oy 273 ’ A = E{log[I'(¢q)f,(cz122)]} can be computed by replacing
6g3 . 1 (pl,pg,plg) by (1,1,1 — 7“), wherel — r € [O, 1] This
dxs v expectation can be pre-computed for all possible values of
The elements of:(0) can be computed from the momentd and forl —r €[0, 1], simplifying the numerical evaluation

of h(x) which are obtained by differentiating the LapIaC(,Qf My.

transform (2). The asymptotic MSEs (26) are then computedMoreover' it is interesting to note that (33) shows that the
by using (9). mutual informationl/, and the correlation- are related by

a one-to-one transformation. Consequentl, andr should
IV. MUTUAL INFORMATION FORBGDS provide similar performance for image registration and change
o ) , detection. The advantage of using the mutual information will
Some limitations of the standard estimated correlation ¢z jiscussed later.
efficient can be alleviated by using other similarity measures
[4]. These similarity measures include the well-known mutual
information. The mutual information of a BGD of shap

parameterg and scale parametd? = (p1,p2,p12) can be
defined as follows: The numerical evaluation off can be avoided for values

B fap(x) of r closed to0 and 1 by using approximations. Indeed, the
My(p1, p2, p12) _/RQfQD(X) log {f(xl,, F(oa2) 4%, (39) " following results can be obtained:

eB. Approximations of the mutual information



1) » — 0: the second-order Taylor expansion fif(z) V. APPLICATION TOIMAGE REGISTRATION AND CHANGE

aroundz = 0 can be written DETECTION
_1 z 22 9 34 This section explains carefully how BGDs can be used for
folz) =1+ () + 2q(q + DI (q) +o(z%), (34) image registration and change detection. Theoretical results

are illustrated by many simulations conducted with synthetic
whereo(z?)/2? tends to0, asz — 0. As a consequence} 5.4 real data.

can be approximated as follows:
CE[z12]  €’E[(z172)"] ( 1 ) (35) A Synthetic Data
q( '

q 2q q+1) 1) Generation: the generation of a vectat = (1, z2)7
By using (9), the mutual informationV/, can be finally distributed according to a BGD has been performed as follows:

A=

approximated as follows « Simulate 2¢ independent multivariate Gaussian vectors
.2 of R? denoted as?,...,z2¢ with means(0,0) and the
M, ~ 5 (36) following 2 x 2 covariance matrix:
2) r — 1: The Taylor expansion of,(z) aroundoco can C= (Ci,j)lgi’jgg = (7’ 2 )1<- .
be written ==

exp (2¢/2) « compute thekth component ofx = (z1,22)7 aszy, =
fq(z) = T (1+0(1)), (37) 55 3 <ica,(#k)?, Wherezj, is thekth component of".
. <i<
dmz By computing the Laplace transform a&f, it can be shown
whereo(1) tends to0, asz — co. As a consequence can  that the two previous steps allow to generate random vectors
be approximated as follows: x = (1, 22)7 distributed according to a BGD whose marginal
distributions are univariate gamma distributio@igg, m1/q)
2/ . N
A~E {log [ eXp( lem) ] }, andG(q, m2/q). Moreover, the correlation coefficient af =
dr(cayxa)a=1/2 (r1,22)7 is equal tor (the reader is invited to consult
~ 2/CE [\/z1a2) — (Q _ 1) (loge (38) Appendi>_< 1 for more details). _ _ _
2 2) Estimation Performancethe first simulations compare
F N
+E[logm1+log:c2]) +10g[ (Q)} the performance of the method of moments v_wth the ML
2y/m method as a function ofi. Note that the possible values

After replacing the means of/z173, log(z;) and log(zy) of n aren = (2p + 1) x (2p + 1), wherep € N (more

derived in appendices | and Il, the following result can pareciselys x 3 =9, DX 5=125...,25X25 = 6.25)' These
obtained values are appropriate for the image registration and change

detection problems, as explained in the next sections. The
M, ~ — %log(l — )+ (q — 1) + log F(p)] number of Monte Carlo runs 8000 for all figures presented
(39)

2 2y/m in this section. The other parameters for this first example are
(1 () my = 400, my = 800 andq = 1 (1-Look images). Figures 2
175 v and 3 show the MSEs of the estimated correlation coefficient
Figure 1 shows that the mutual informatioh/, can be for two different correlation structures & 0.2 andr = 0.8).
accurately approximated by (36) and (39) ﬁor<q 0.5 and The circle curves correspond to the estimator of moments
r > 0.9. This figure has been obtained with the paramete}éqereaS the triangle curves correspond to the .MLE' These
p1 = 1 andpy, = 1 without loss of generality (see discussio lgures S.h.ow the m;erest of the ML method, which is much
at the beginning of this section) more efficient for this problem than the method of moments.
' The figures also show that the difference between the two
3 . . . . methods is more significant for large values of the correlation
coefficientr. Note that the theoretical asymptotic MSEs of
both estimators determined in (18) and (26) are also displayed
on Figs. 2 and 3 (continuous lines). The theoretical MSEs are
clearly in good agreement with the estimated MSEs, even for
small values ofn. This is particularly true for large values of
.
3) Detection Performancewe consider synthetic vectors
x = (z1,72)T (coming from 128 x 128 synthetic images)
distributed according to BGDs with = 0.3 andr» = 0.65
modeling the presence and absence of changes, respectively.
The correlation coefficient of each bivariate vectax(/) =
xy 7y ori,j=1... is estimated from vectors
(09 28 INT (ford,j =1...128 timated f t
Fig. 1. Mutual information and its approximations for— 0 andr — 1. belonging to windows of sizew = (2p + 1) x (2p + 1)
centered around the pixel of coordinatés;) in the two

Mutual Information
Approximation r — 1
Approximationr — 0

0 0.2 04 0.6 0.8 1
Correlation r



05 ~@--Moment for these examples. However, it is interesting to note that the

Asymptotic WO estimators nave similar pertormances tor large winaow
-1 Variance (ML) slizes.
Asymptotic
Variance (Moment)
w-15
%)
= ! % NN eee————
- |  SMqMN T
S -2
H ML
2.5 06F | ~ Moment o6p | . Moment
0.4 0.4
log(3x3)log(5x5) log(9x9) log(25x25)
log number of pixels log(n) 0.2 0.2
Fig. 2. log MSEs versukg(n) for parameter (r = 0.2). 9 02 02 05 08 1 o2z o4 o6 08 1
1 ...... @ Moment
—— N (a) n=9x9 (b) n=15x 15
Asymptotic
-1.5 Variance (ML)
Asymptotic
-2 Variance (Moment) 1 —
Z a
> 25 osf
S
-3 06 ML
Moment
-3.5 0.4
0.2
log(3x3)log(5x5) log(9x9) log(25x25)
log number of pixels log(n) 0

Fig. 3. log MSEs versukg(n) for parameter (r = 0.8).

(©n=21x21
analyzed images. The following binary hypothesis test is then
considered: Fig. 4. ROCs for synthetic data for different window sizes.

Hy, (absence of change) 7> A,

40
H; (presence of change) 7 < A, (40)

, _ . B. Application to Image Registration
where ) is a threshold depending on the probability of false

alarm and7 is an estimator of the correlation coefficient 'S Section studies an image registration technique based
(obtained from the method of moments or the maximu@ BGDs. More precisely, consider two images whose pixels

1 n 1 n R
likelihood principle). The performance of the change detectiGie denoted{ai, ..., '} and {5, ..., 25}. Given the left
strategy (40) can be defined by the two following probabilitid§'a9€ ¥1. We propose the following basié-step image
[13, p. 34] registration algorithm:

po_p : . « Stepl: determine the search area in the right image
b =P [accepting/, [H: is trudA Here, we use images that have been previously registered
. . (41) by a human operator using appropriate interactive soft-
= PP <A[Hiis tug = [m pi(u)du, ware, a digital elevation model and geometrical sensor
models. The use of registered images allows us to validate

Pea =P [acceptingtt; [Ho is trug the results, since the expected shift between the images

=P[F>\|H;is trud = /Oopo(u)du’ (42) is equal to 0. For this experiment and without loss of
A generality, the search area is reduced to a line (composed
Wherepo(u) andpl(u) are the pdfs of  under hypothesego Of 10 pixels before andl10 pierS after the pixel of
and H;, respectively. Thus, for each value &f there exists interest),

a pair (Pra, Po). The curves ofPp, as a function ofPy 4 are « Step2: for each pixelz in the search area, estimate

called receiver operating characteristics (ROCs) [13, p. 38]. @ similarity measure (correlation coefficient or mutual
The ROCs for the change detection problem (40) are information) between:; and s,

depicted on figures 4(a), 4(b) and 4(c) for three different « Step3: select the pixel providing the largest similarity.

window sizes corresponding to = 2p + 1 € {9,15,21}. This 3-step procedure has been applied to a couple of Radarsat

The ML estimator clearly outperforms the moment estimatdrLook images acquired before and after the eruption of the



Nyiragongo volcano which occurred in Januat902. The (which can be defined as the relative amplitude of the peak
Radarsat images are depicted on figures 5(a) (before erupticoinpared to that of the plateau) varies from one estimator
and 5(b) (after eruption). Note that some changes due to teeanother and depends on the window size. In particular,
eruption can be clearly seen on the landing track for exampthe ML estimator provides a slightly better selectivity than
Figure 5(c) indicates the pixels of the image which have beéme estimator of moments. Note that the errobars are very
affected by the eruption (white pixels). This reference magmilar for the two estimators. Even if the different methods
was obtained by photo-interpreters — who used the same SpiRvide similar results for image registration, it is important
images we are using — and ground truth elaborated by twe note that the proposed framework allows one to define
United Nations Office for the Coordination of Humanitariamn interesting joint distribution for the vectdr?,x3). This
Affairs (OCHA) Humanitarian Information Center (HIC) ondistribution might be used for other tasks as, for instance, joint
27 January 2002, that is a few days after the eruption. Thisage segmentation and classification of both data sets.
reference map was afterwards validated by a terrain mission.
The types of change covered are: presence of a lava flow
over old existing lava flows, damaged buildings (areas with
different types of habitat). The area of study does not include
forest or areas of dense vegetation ($d#p://users.
skynet.be/technaphot/webgomma/index.htm for
some examples of damages).
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Fig. 5. Radarsat images of the Nyiragongo volcano. 06 R
1 S W M Moment
Figures 6(a), 6(b) and 6(c) show an average of the estimated 2
correlation coefficients with errobars corresponding to mean :%:0'2 L N
standard deviatiol0. These estimates have been computed By — g S S—

for all black pixels which have not been affected by the o e s T e e

eruption for different window sizes. More precisely, for every

black pixel zi of the left figure, we consider a window of

sizen = (2p+ 1) x (2p + 1) centered around’. The same (c) Window Sizen = 15 x 15

window is also considered in the right picture around pixel

x}. The correlation coefficient between the two pixels Fig. 6.  Averaged correlation coefficient estimates versugor black

and x% is estimated by using the = (2p 4 1) % (2p + 1) pixgls with errorpars (ML: maximum likelihood e_stimato_r, Moment: moment
. . . . .estimator) for Nyiragongo images for several window sizes.

couples of pixels located in the left and right windows. This

operation is repeated for different central pixefsbelonging

to the search area (i.e. the pixels of [$é+7—}_10§7—§10 = The same operation is conducted on a rectangular region
[a57 10wt ad 2t 2H10)), where 7 is the shift composed of white pixels of the mask 5(c) (which have been

between the right and left windows. The results are averagaifiected by the eruption) depicted in white on figures 5(a)
over all black pixels displayed in the mask 5(c). The estimateahd 5(b). The results presented on Fig. 7 clearly show that
correlation coefficient is maximum when= i, or equivalently the estimated correlation coefficient is much smaller when
7 = 0, i.e. when the left and right windows are centered abmputed on a region affected by the eruption (and also that
the same location. This result indicates that the correlatitimere is no peak which might be used for registration). This
coefficient can be efficiently used for image registration. Moreesult is interesting and can be used for detecting changes
over, it is interesting to study how the estimator selectivithetween the two images, as illustrated in the next section.



Fig. 8. Radarsat images of Gloucester before and after Flood.

change detectors

) ‘ ‘ ‘ The ROCs for this change detection problem are shown on
02M figures 9(a), 9(b) and 9(c) for different window sizesThe
- correlation ML detector clearly provides the best results.
2 —a— ML
g 01 o] Moment
8 005} o A a ) 1
o 'Q'Q~ N Q’ _e_a' 1 |1 0 Z o —
Boo vg? Y o0 S - -~
0.05 ‘ ‘ ‘ 0.8 e 0.8 /
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Fig. 7. Averaged correlation coefficient estimates versdsr white pixels 0.4 /i 0.4 /'
belonging to the Nyiragongo images square region (ML: maximum likelihoor I . /
estimator, Moment: moment estimator). o2l 7/ - Correlation ML ool i/ | Correlation ML
Correlation Moment Correlation Moment
Ratio Edge Ratio Edge
i . i 0O 0.2 0.4 0.6 0.8 1 00 0.2 0.4 0.6 0.8 1
C. Application to Change Detection
This section considers twd-Look images acquired at
. . (@n=9x9 (byn=15x15
different dates around Gloucester (England) before and during
a flood (on Sept9, 2000 and Oct.21, 2000 respectively). The
images as well as a mask indicating the pixels affected by the ;
flood are depicted on Figs. 8(a), 8(b) and 8(c). The reference P
. . o
map 8(c) was obtained by photo-interpreters — who used the 08 s
same SAR images we are using — and a reference map built Yy~
from Landsat and SPOT data acquired one day after the radar 06 Yy
image. os }i{:,.
02 ‘,j Correlation ML
“1f Correlation Moment
Ratio Edge
00 0.2 0.4 0.6 0.8 1

(©)n=21x21
Fig. 9. ROCs for Gloucester images for different window sizes.

The last experiments illustrate the advantage of using the
mutual information for change detection. Consider the follow-
ing change detector based on the mutual information:

Hy
H,

where M,(1,1,7) is the estimated mutual information ob-
tained by numerical integration of (32). The ROCs obtained
with the detectors (40) and (43) are identical, reflecting
the one-to-one transformation between the paramétensd
M,(1,1,7). However, the advantage of using the mutual infor-
mation for change detection is highlighted on Fig. 10, which
shows the average probability of errét = %(PND + Pra)
(where Pyp = 1 — Py is the probability of non detection) as
This section compares the performance of the following function of the threshold for the change detectors (40)
and (43). For a practical application, it is important to choose
« the ratio edge detector which has been intensively usadthreshold\pgs for these change detection problems. This
for SAR images [14], [15], choice can be governed by the value of the probability of
the correlation change detector, wherein (40) has error P.. Assume that we are interested in having a probability
been estimated with the moment estimator (referred ¢d error satisfyingP. < 0.39. Figure 10 indicates that there
as “Correlation Momeri), are clearly more values of the thresholgra satisfying this
the correlation change detector, wherm (40) has been condition for the curve “Mutual information” than for the
estimated with the ML method for BGDs (referred to asurve “Correlation ML". This remains true whatever the value
“Correlation ML"). of the maximum probability of erroi.. Consequently, the

(absence of change) M,(1,1,7) > Appa,

43
(presence of change) M,(1,1,7) < ApFpa, (*3)

(a) Before

(b) After (c) Mask



threshold is easier to be adjusted with the detector based on APPENDIXII
the mutual information (43) than the detector based on theE [,/xlxﬂ AND ITS APPROXIMATION FORT — 1 WHERE

correlation coefficient (40). (z1,22) ~T(q,P)
A. E [\/z1z2] computation
0.5 The moment of the random variablgz z; is derived from
Correlation ML~ |+ the probability density functiorf,p of the bivariate vector
. - b
- Mutual Information X = (21, 12)":
0.451 . E[Vz1z2] =/ / VZ122 fop (21, 22)dx1d2s,
Ry JR,
(0]
o
_/ / < D21 +p1$2) 1 e xy i
= exp | —
0.4 Ry JR, P12 piol ()
X fq(CJ’JlLL’Q)HRi (X)
0 0.5 1 1.5 _— . . .
pEA The definition offq given in (4) yields:
Fig. 10. Average probability of erraPe = 1 (Pra + Pup) versus threshold E [/Z172] = Z
A for Gloucester images for an estimation window of size- 9 x 9 k>0 k'F q + k

‘ng
X / exp <—p2x1> 1‘({+k71/2dx1
Ry P12
VI. CONCLUSIONS
X / exp (—mm) mg+k71/2dx2,
This paper studied the performance of image registration JR+ P12
and change detection techniques based on bivariate gamma ok Pio atk+1/2
distributions. Both methods required to estimate the correlation :p Z KIT(q + k) <p2 >
coefficient between two images. Estimators based on the ol "f>0
method of moments and on the maximum likelihood principle P12 a+k+1/2
were studied. The asymptotic performance of both estimators Plg+k+1/2) Plg+k+1/2),
was derived. The application to image registration and change q+1 2
detection was finally investigated. ( P12 ) VPip2 > F((Za:k * 1k/2) rk,
The results showed the interest of using prior information pip2 > (g + k)
about the data. On the other hand, the method presented here i1 v/mims (T(g+1/2) 2
should not be used for more general cases where the BGD =(1-r) p ()
model does not hold. For these cases, the use of more general 1 1
models as, for instance, copulas [16] or bivaria_te versions of X oF) (q + 504 + 2;q;r> ,
the Pearson system [1, p. 6-9], should be studied.

since

_ P1p2 — P12 _ p%g c
VIlI. ACKNOWLEDGEMENTS P1p2 p1p2
The authors would like to thank A. Crouzil and G. Letadlere 2F1 is the Gauss’s hypergeometric function (see [10, p.

for fruitful discussions regarding image registration and muR©5-566]) defined as:
tivariate gamma distributions, respectively. . | )
9 p y 2Fi(abiez) =Y (@)r(b) 2*

=0 (C)k k! ’
APPENDIXI and (a);, is the Pochlammer symbol presented in section II-C
E [log U] WHEREU ~ I'(a, b) (note that(a);, = “(+)k for any integetk and any reat > 0).
The moment oflog U can be determined by the simpleBY using the following properties of Gauss's hypergeometric
change of variabld” = bU: functions:
- . 1) The hypergeometric seriesF;(a,b;c; z) converges if
E[log U] = / log (1) b ety ¢ IS not a negative int_eger for complex numbersuch
0 ['(a) that|z| < 1 or |z| = 1 if R[c —a —b] > 0.
B o U\ 4 oa-i1 2) oFi(a,b;c;z) = (1—2)"%Y yFi(c—a,c—b;c; z) for
- F(a)/o log (b) e v dv, all of |z| < 1 (see [10, p. 559]),
1 the following results can be obtained:
= =~ [I"(a) — log(b)I(a)], >
['(a) E[a7] = vmimg T(qg +1/2) 7 ( 1 -1 )
= ¢(a) — log(b). (44) Vi) q T2 '\ 2 2°'%")
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B. E[,/z1x2] approximation forr — 1

The following identity (Gauss’s hypergeometric theorem):

T'(c)T(c—a—10)

2F1 (a,byc;1) = T(c—a)T(c—1b)’

leads to:
-1 -1\ _T(gT(g+1)
2F1< ) ) 9 7Q71> 71—1(q+1/2)27

and to the following first order Taylor expansion aroung 1:

-1 -1\ TI(g'(g+1)
2P (Q,Q,q,z) “Trize T
=1 —1
X oF) <2727Q71>+0(1_Z)7

whereo(1 — z)/(1 — z) tends to0, asz — 1. Using
’ b
oF (a,b;¢;2) = % oF 1 (a+ 1,0+ 1;¢+1;2) for |z] < 1,

the previous Taylor expansion can be written:

-1 -1\ T(g)T(g+1) z—1
21 (2’2"“) " T+ 1727 (” I >
+o(1—2).
Finally,
Vmumz D(g+1/2° T(q)T(g+1) (, 1—r
Elvmml = M@? T+ 1727 (1 1 )

+0(1 —r),

=/mimy <1 — 14(17") +o(l—7r) forr—1.

APPENDIX I

GENERATION OF SYNTHETIC DATA DISTRIBUTED
ACCORDING TOBGDs

This appendix shows that the vecter= (x1,z2)” where
TE Y 1<icog(#)? (wherezj is the kth component of

2’ ~ N(0,C), With C = (cij),, <0 = (r )m ~

distributed according to a BGD whose marginals are Gam
distributions I'(¢, m1 /q) and I'(¢,m2/q) and whose corre-

ij =
li—jl
2

lation coefficient isr. By using the independence between

224, the Laplace transform of evaluated at
can be written:

vectorsz!,
t = (ti,t2)7

E [exp (—t"x)] = E | [ [ exp (~txar) |,
k=1

29 iNT i
:HE [exp (—(Z ) 2S (z ))] ,
i=1
where
(o
S = ( 0 tg% )

expressed as:

B 2 exp (—z' (C™' +8) z)
B 1;[1 /]R (27)v/det C

1 q
s CSJ 7
1+ Z —t + ( tltz]

B {det(
wherel; is the identity matrix in dimensio. According to
the definition (2), the vectok is distributed according to a
BGD with shape parameterand scale parameters = ™,
Py = % p12 = (1 — r)m1m2 Property (8) ensures that the
correlation coefficient o(xl,@) is r.

dz

E [exp (fth)}

—q

-n)=

)
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