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Abstract— This paper evaluates the potential interest of using
bivariate gamma distributions for image registration and change
detection. The first part of the paper studies estimators for
the parameters of bivariate gamma distributions based on the
maximum likelihood principle and the method of moments.
The performance of both methods are compared in terms of
estimated mean square errors and theoretical asymptotic vari-
ances. The mutual information is a classical similarity measure
which can be used for image registration or change detection.
The second part of the paper studies some properties of the
mutual information for bivariate Gamma distributions. Image
registration and change detection techniques based on bivariate
gamma distributions are finally investigated. Simulation results
conducted on synthetic and real data are very encouraging.
Bivariate gamma distributions are good candidates allowing us
to develop new image registration algorithms and new change
detectors.

Index Terms— Multivariate gamma distributions, correlation
coefficient, mutual information, maximum likelihood, image reg-
istration, image change detection.

I. I NTRODUCTION

The univariate gamma distribution is uniquely defined in
many statistical textbooks. However, extensions defining mul-
tivariate gamma distributions (MGDs) are more controversial.
For instance, a full chapter of [1] is devoted to this problem
(see also references therein). Most journal authors assume that
a vectorx = (x1, . . . , xd)T is distributed according to an
MGD if the marginal distributions ofxi are univariate gamma
distributions. However, the family of distributions satisfying
this condition is very large. In order to reduce the size of the
family of MGDs, S. Bar Lev and P. Bernardoff recently defined
MGDs by the form of their moment generating function or
Laplace transforms [2] [3]. The main contribution of this
paper is to evaluate these distributions as candidates for image
registration and change detection.

Given two remote sensing images of the same sceneI,
the reference, andJ , the secondary image, the registration
problem can be defined as follows: determine a geometric
transformationT which maximizes the correlation coefficient
between imageI and the result of the transformationT ◦J . A
fine modeling of the geometric deformation is required for the
estimation of the coordinates of every pixel of the reference
image inside the secondary image. The geometric deformation
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is modeled by local rigid displacements [4]. The key element
of the image registration problem is the estimation of the
correlation coefficient between the images. This is usually
done with an estimation window in the neighborhood of each
pixel. In order to estimate the local rigid displacements with a
good geometric resolution, one needs the smallest estimation
window. However, this leads to estimations which may not be
robust enough. In order to perform high quality estimations
with a small number of samples, we propose to introduce
a priori knowledge about the image statistics. In the case
of power radar images, it is well known that the marginal
distributions of pixels are gamma distributions [5]. Therefore,
MGDs seem good candidates for the robust estimation of the
correlation coefficient between radar images.

The change detection problem can be defined as follows.
Consider two co-registered synthetic aperture radar (SAR)
intensity imagesI and J acquired at two different datestI
and tJ . Our objective is to produce a map representing the
changes occurred in the scene between timetI and timetJ .
The final goal of a change detection analysis is to produce
a binary map corresponding to the two classes:changeand
no change. The problem can be decomposed into two steps:
1) generation of a change image and 2) thresholding of the
change image in order to produce the binary change map. The
overall detection performance will depend on both, the quality
of the change image and the quality of the thresholding. In
this work, we choose to concentrate on the first step of the
procedure, that is, the generation of an indicator of change for
each pixel in the image. The change indicator can be obtained
by computing the local correlation between both images, for
each pixel position. For interesting approaches in the field
of unsupervised change image thresholding, the reader can
refer to the works of Bruzzone and Fernández Prieto [6], [7],
Bruzzone and Serpico [8] and Bazi et al. [9]. The change
indicator can also be useful by itself. Indeed, the end user of
a change map often wants, not only the binary information
given after thresholding, but also an indicator of the change
amplitude. In order to evaluate the quality of a change image
independently of the choice of the thresholding algorithm, one
can study the evolution of the probability of detection as a
function of the probability of false alarm, when a sequence
of constant thresholds is used for the whole image. As in
the image registration problem, a small estimation window is
required in order to obtain a high resolution detector, that is,
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a detector being able to identify changes with a small spatial
extent. Again, the introduction of a priori knowledge through
MGDs may improve the estimation accuracy when a small
number of samples is used.

This paper is organized as follows. Section II recalls some
important results on MGDs. Section III studies estimators of
the unknown parameters of a bivariate gamma distribution
(BGD). These estimators are based on the classical maximum
likelihood method and method of moments. Section IV studies
interesting properties of the mutual information for BGDs.
The application to image registration and change detection
is discussed in section V. Conclusions are finally reported in
section VI.

II. M ULTIVARIATE GAMMA DISTRIBUTIONS

A. Definitions

A polynomialP (z) with respect toz = (z1, . . . , zd) is affine
if the one variable polynomialzj 7→ P (z) can be writtenAzj+
B (for any j = 1, . . . , d), whereA andB are polynomials
with respect to thezi’s with i 6= j. A random vectorx =
(x1, . . . , xd)T is distributed according to an MGD onRd

+ with
shape parameterq and scale parameterP (denoted asx ∼
G(q, P )) if its moment generating function (also called Laplace
transform) is defined as follows [3]:

ψG(q,P )(z) = E
(
e−

Pd
i=1 xizi

)
= [P (z)]−q, (1)

whereq ≥ 0 andP is an affine polynomial. It is important to
note the following points:

• the affine polynomialP has to satisfy appropriate condi-
tions includingP (0) = 1. In the general case, determin-
ing necessary and sufficient conditions on the pair(q, P )
such thatG(q, P ) exist is a difficult problem. The reader
is invited to look at [3] for more details,

• by settingzj = 0 for j 6= i in (1), we obtain the Laplace
transform ofxi, which is clearly a gamma distribution
with shape parameterq and scale parameterpi, wherepi

is the coefficient ofzi in P .

A BGD corresponds to the particular cased = 2 and is
defined by its moment generating function

ψ(z1, z2) = (1 + p1z1 + p2z2 + p12z1z2)
−q
, (2)

with the following conditions

p1 > 0, p2 > 0, p12 > 0, p1p2 − p12 ≥ 0. (3)

In the bi-dimensional case, (3) are necessary and sufficient
conditions for (2) to be the moment generating function of
a probability distribution defined on[0,∞[2. Note again that
(2) implies that the marginal distributions ofx1 and x2 are
“gamma distributions” (denoted asx1 ∼ G(q, p1) and x2 ∼
G(q, p2)) with the following densities:

f1D(xi) =
xq−1

i

Γ(q)pq
i

exp
(
−xi

pi

)
IR+(xi)

where IR+(xi) is the indicator function defined on[0,∞[
(IR+(xi) = 1 if xi ≥ 0, IR+(xi) = 0 else), for i ∈ {1, 2}.
HereΓ(·) is the usual gamma function defined in [10, p. 255].

B. Bivariate Gamma pdf

Obtaining tractable expressions for the probability density
function (pdf) of a MGD defined by (1) is a challenging
problem. However, in the bivariate case, the problem is much
simpler. Straightforward computations allow to obtain the
following density (see [1, p. 436] for a similar result)

f2D(x) = exp
(
−p2x1 + p1x2

p12

)
xq−1

1 xq−1
2

pq
12Γ (q)

fq(cx1x2)IR2
+
(x),

wherec = p1p2−p12
p2
12

andfq(z) is defined as follows

fq(z) =
∞∑

k=0

zk

k!Γ (q + k)
. (4)

Note that fq(z) is related to the confluent hypergeometric
function (see [1, p. 462]).

C. BGD Moments

The Taylor series expansion of the Laplace transformψ can
be written:

ψ(z1, z2) =
∑

k,l≥0

(−1)k+l

k!l!
E
[
xk

1x
l
2

]
zk
1z

l
2. (5)

The moments of a BGD can be obtained by differentiating (5).
For instance, the mean and variance ofxi (denotedE[xi] and
var(xi) respectively) can be expressed as follows

E [xi] = qpi, var(xi) = qp2
i , (6)

for i = 1, 2. Similarly, the covariance cov(x1, x2) and corre-
lation coefficientr(x1, x2) of a BGD can be easily computed:

cov(x1, x2) = E [x1x2]− E [x1]E [x2] = q(p1p2 − p12), (7)

r(x1, x2) =
cov(x1, x2)√

var(x1)
√

var(x2)
=
p1p2 − p12

p1p2
. (8)

It is important to note that for a known value ofq, a BGD
is fully characterized byθ = (E [x1],E [x2], r(x1, x2)) which
will be denotedθ = (m1,m2, r) in the remaining of the paper.
Indeed,θ and(p1, p2, p12) are obviously related by a one-to-
one transformation. Note also that the conditions (3) ensure
that the covariance and correlation coefficient of the couple
(x1, x2) are both positive.

More computations allow to obtain a general formula for
the momentsE [xm

1 x
n
2 ], for (m,n) ∈ N2, of a BGD:

E [xm
1 x

n
2 ] = mm

1 m
n
2

(q)m

qm

(q)n

qn

min (m,n)∑
k=0

(−m)k(−n)k

(q)k

rk

k!
, (9)

where(a)k is the Pochhammer symbol defined by(a)0 = 1
and

(a)k+1 = (a+ k) (a)k = a(a+ 1) . . . (a+ k),

for any integerk (see [10, p. 256]). The mutual information
of a BGD is related to the moments of

√
x1x2 andlog(xj) for

j = 1, 2. Straightforward computations detailed in appendices
I and II yield the following results:

E [log(xj)] = ψ(q) + log
(
mj

q

)
, (10)
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and

E [
√
x1x2]=

√
m1m2

q

Γ(q + 1
2 )2

Γ(q)2 2F1

(
−1
2
,
−1
2

; q; r
)
, (11)

whereψ(z) = Γ′(z)/Γ(z) is the digamma function and2F1

is the Gauss’s hypergeometric function (see [10, p. 555–566]).

III. PARAMETER ESTIMATION

This section addresses the problem of estimating the un-
known parameter vectorθ from n independent vectorsx =
(x1, . . . ,xn), wherexi = (xi

1, x
i
2) is distributed according to

a BGD with parameter vectorθ. Note that the parameterq is
assumed to be known here, as in most practical applications.
However, this assumption could be relaxed.

A. Maximum Likelihood Method

1) Principles: The maximum likelihood (ML) method can
be applied in the bivariate case (d = 2) since a closed-form
expression of the density is available1. In this particular case,
after removing the terms which do not depend onθ, the log-
likelihood function can be written as follows:

l(x;θ) =− nq log (m1m2)−
2∑

j=1

nqxj

mj(1− r)

− nq log (1− r) +
n∑

i=1

log fq(cxi
1x

i
2),

(12)

where c = rq2

m1m2(1−r)2 , andxj = 1
n

∑n
i=1 x

i
j is the sample

mean ofxj for j = 1, 2. By differentiating the log-likelihood
with respect tom1, m2 and r, and by noting thatf ′q(z) =
fq+1(z), the following set of equations is obtained

nqxi

1− r
− nqmi −

r

(1− r)2
q2mi∆ = 0, i ∈ {1, 2} , (13)

nqx1

(1− r)m1
+

nqx2

(1− r)m2
− nq − 1 + r

(1− r)2
q2∆ = 0, (14)

where

∆ =
1

m1m2

(
n∑

i=1

xi
1x

i
2

fq+1(cxi
1x

i
2)

fq(cxi
1x

i
2)

)
. (15)

The maximum likelihood estimators (MLEs) ofm1 andm2

are then easily obtained from these equations:

m̂1ML = x1, m̂2ML = x2. (16)

After replacingm1 andm2 by their MLEs in (14), we can
easily show that the MLE ofr is obtained by computing the
root r ∈ [0, 1[ of the following function

g(r) = r − 1 +
q

nx1x2

(
n∑

i=1

xi
1x

i
2

fq+1(ĉxi
1x

i
2)

fq(ĉxi
1x

i
2)

)
= 0, (17)

1The problem is much more complicated in the general case whered > 2
since there is no tractable expression for the MGD density. In this case, the
coefficients ofP can be estimated by maximizing an appropriate composite
likelihood criterion such as thepairwise log-likelihood. The reader is invited
to consult [11] for more details.

where

ĉ =
r

(1− r)2
q2

x1x2
.

This is achieved by using a Newton-Raphson procedure initial-
ized by the standard correlation coefficient estimator (defined
in (25)). The convergence of the Newton-Raphson procedure
is generally obtained after few iterations.

2) Performance: The asymptotic properties of the ML
estimatorsm̂1ML and m̂2ML can be easily derived from the
moments of the univariate gamma distributionsG(q, p1) and
G(q, p2). These estimators are obviously unbiased, convergent
and efficient. However, the performance ofr̂ML is more
difficult to study. Of course, the MLE is known to be asymp-
totically unbiased and asymptotically efficient, under mild
regularity conditions. Thus, the mean square error (MSE) of
the estimates can be approximated for large data records by the
Cramer-Rao lower bound (CRLB). For unbiased estimators,
the CRLBs of the unknown parametersm1, m2 andr can be
computed by inverting the Fisher information matrix, whose
elements are defined by

[I (θ)]ij = −E

[
∂2 log f2D(x)

∂θi∂θj

]
, (18)

where θ = (θ1, θ2, θ3)T = (m1,m2, r)T . However this
computation is difficult because of the termlog fq appearing
in the log-likelihood. In such situation, it is very usual to
approximate the expectations by using Monte Carlo methods.
More specifically, this approach consists of approximating the
elements of the Fisher information matrixI (θ) as follows

[I (θ)]ij ' − 1
N

N∑
k=1

∂2 log f2D(xk)
∂θi∂θj

, (19)

wherexk is distributed according to the BGD of densityf2D

andN is the number of Monte Carlo runs.

B. Method of Moments

1) Principles: This section briefly recalls the principle of
the method of moments. Consider a functionh(·) : RM → RL

and the statisticsn of sizeL defined as:

sn =
1
n

n∑
i=1

h(xi), (20)

where h(·) is usually chosen such thatsn is composed of
empirical moments. Denote as:

f(θ) = E[sn] = E[h(x1)]. (21)

The moment estimator ofθ is constructed as follows:

θ̂Mo = g(sn), (22)

whereg(f(θ)) = θ. By considering the function

h(x) = (x1, x2, x
2
1, x

2
2, x1x2),

the following result is obtained

f(θ) = [m1,m2,m
2
1(1+q−1),m2

2(1+q−1),m1m2(1+rq−1)].
(23)
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The unknown parameters(m1,m2, r) can then be expressed
as functions off(θ) = (f1, f2, f3, f4, f5). For instance, the
following relations are obtained

m1 = f1, m2 = f2, r =
f5 − f1f2√

(f3 − f2
1 )(f4 − f2

2 )
. (24)

yielding the standard estimators:

m̂1Mo = x1, m̂2Mo = x2,

r̂Mo =
∑n

i=1(x
i
1 − x1)(xi

2 − x2)√∑n
i=1(x

i
1 − x1)2

√∑n
i=1(x

i
2 − x2)2

.
(25)

2) Performance:The asymptotic performance of the esti-
mator θ̂Mo can be derived by imitating the results of [12]
derived in the context of time series analysis. A key point
of these proofs is the assumptionsn

a.s.→ s = f(θ) which is
verified herein by applying the strong law of large numbers to
(20). As a result, the asymptotic MSE ofθ̂Mo can be derived:

lim
n→∞

nE[(θ̂Mo − θ)2] = G(θ)Σ(θ)G(θ)t, (26)

whereG(θ) is the Jacobian matrix of the vectorg(·) at point
s = f(θ) and

Σ(θ) = lim
n→∞

nE
[
(sn − s)(sn − s)T

]
. (27)

In the previous example, according to (24),g : R5 → R3 is
defined as follows

g(x) =

(
x1, x2,

x5 − x1x2√
(x3 − x2

1)(x4 − x2
2)

)
. (28)

The partial derivatives ofg1 and g2 with respect toxi, i =
1, . . . , 5 are trivial. By denotingγ =

√
(x3 − x2

1)(x4 − x2
2),

those ofg3 can be expressed as

∂g3
∂x1

= −x2

γ
+
x1(x4 − x2

2)(x5 − x1x2)
γ3

,

∂g3
∂x2

= −x1

γ
+
x2(x3 − x2

1)(x5 − x1x2)
γ3

,

∂g3
∂x3

=
(x1x2 − x5)(x4 − x2

2)
2γ3

,

∂g3
∂x4

=
(x1x2 − x5)(x3 − x2

1)
2γ3

,

∂g3
∂x5

=
1
γ
.

(29)

The elements ofΣ(θ) can be computed from the moments
of h(x) which are obtained by differentiating the Laplace
transform (2). The asymptotic MSEs (26) are then computed
by using (9).

IV. M UTUAL INFORMATION FORBGDS

Some limitations of the standard estimated correlation co-
efficient can be alleviated by using other similarity measures
[4]. These similarity measures include the well-known mutual
information. The mutual information of a BGD of shape
parameterq and scale parameterP = (p1, p2, p12) can be
defined as follows:

Mq(p1, p2, p12) =
∫

R2
f2D(x) log

[
f2D(x)

f(x1, .)f(., x2)

]
dx, (30)

wheref(x1, .) and f(., x2) are the marginal densities of the
vectorx = (x1, x2) and f2D(x) is its joint pdf. This section
shows that the mutual information of BGDs is related to
the correlation coefficientr by a one-to-one transformation.
Interesting approximations of this mutual information forr →
0 andr → 1 are also derived.

A. Numerical Evaluation of the mutual information

By replacing the densitiesf(x1, .), f(x2, .) and f2D(x)
by their analytical expressions, the following results can be
obtained:

Mq(p1, p2, p12)

= q log
(
p1p2

p12

)
− c

(
E [x1]

p12

p1
+ E [x2]

p12

p2

)
+ E {log [Γ(q)fq(cx1x2)]}.

(31)

The first terms ofMq(p1, p2, p12) can be easily expressed as
a function ofθ by using the mean of a univariate gamma dis-
tribution given in (6). The mutual informationMq(p1, p2, p12)
can then be expressed as follows:

Mq(p1, p2, p12) =q log(1− r)− 2qr
1− r

+ E {log [Γ(q)fq(cx1x2)]}.
(32)

However, a simple closed form expression forA =
E {log [Γ(q)fq(cx1x2)]} cannot be obtained, requiring to use
a numerical procedure for its computation.

The numerical evaluation ofA can be significantly simpli-
fied by noting that(x1, x2) and (αx1, βx2) have the same
mutual information for any(α, β) ∈ R2. Indeed, this property
implies the following result:

Mq(p1, p2, p12) = Mq

(
1, 1,

p12

p1p2

)
= Mq (1, 1, 1− r) , (33)

where 1 − r = p12
p1p2

∈ [0, 1]. As a consequence,
A = E {log [Γ(q)fq(cx1x2)]} can be computed by replacing
(p1, p2, p12) by (1, 1, 1 − r), where 1 − r ∈ [0, 1]. This
expectation can be pre-computed for all possible values of
q and for 1 − r ∈]0, 1], simplifying the numerical evaluation
of Mq.

Moreover, it is interesting to note that (33) shows that the
mutual informationMq and the correlationr are related by
a one-to-one transformation. Consequently,Mq and r should
provide similar performance for image registration and change
detection. The advantage of using the mutual information will
be discussed later.

B. Approximations of the mutual information

The numerical evaluation ofA can be avoided for values
of r closed to0 and 1 by using approximations. Indeed, the
following results can be obtained:
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1) r → 0: the second-order Taylor expansion offq(z)
aroundz = 0 can be written

fq(z) = 1 +
z

qΓ(q)
+

z2

2q(q + 1)Γ(q)
+ o(z2), (34)

whereo(z2)/z2 tends to0, as z → 0. As a consequence,A
can be approximated as follows:

A ≈ cE [x1x2]
q

−
c2E

[
(x1x2)2

]
2q

(
1

q(q + 1)

)
. (35)

By using (9), the mutual informationMq can be finally
approximated as follows

Mq ≈
r2

2
. (36)

2) r → 1: The Taylor expansion offq(z) around∞ can
be written

fq(z) =
exp (2

√
z)√

4πzq−1/2
(1 + o(1)) , (37)

whereo(1) tends to0, asz → ∞. As a consequence,A can
be approximated as follows:

A ≈ E

{
log

[
exp

(
2
√
cx1x2

)√
4π(cx1x2)q−1/2

]}
,

≈ 2
√
cE [

√
x1x2]−

(q
2
− 1
) (

log c

+ E [log x1 + log x2]
)

+ log
[

Γ(q)
2
√
π

]
.

(38)

After replacing the means of
√
x1x2, log(x1) and log(x2)

derived in appendices I and II, the following result can be
obtained

Mq ≈−
1
2

log(1− r) +
(
q − 1

2

)
+ log

[
Γ(p)
2
√
π

]
−
(
q − 1

2

)
ψ(q).

(39)

Figure 1 shows that the mutual informationMq can be
accurately approximated by (36) and (39) forr < 0.5 and
r > 0.9. This figure has been obtained with the parameters
p1 = 1 andp2 = 1 without loss of generality (see discussion
at the beginning of this section).

Fig. 1. Mutual information and its approximations forr → 0 andr → 1.

V. A PPLICATION TO IMAGE REGISTRATION AND CHANGE

DETECTION

This section explains carefully how BGDs can be used for
image registration and change detection. Theoretical results
are illustrated by many simulations conducted with synthetic
and real data.

A. Synthetic Data

1) Generation: the generation of a vectorx = (x1, x2)T

distributed according to a BGD has been performed as follows:

• simulate 2q independent multivariate Gaussian vectors
of R2 denoted asz1, . . . , z2q with means(0, 0) and the
following 2× 2 covariance matrix:

C = (ci,j)1≤i,j≤2 =
(
r
|i−j|

2

)
1≤i,j≤2

,

• compute thekth component ofx = (x1, x2)T as xk =
mk

2q

∑
1≤i≤2q(z

i
k)2, wherezi

k is thekth component ofzi.

By computing the Laplace transform ofx, it can be shown
that the two previous steps allow to generate random vectors
x = (x1, x2)T distributed according to a BGD whose marginal
distributions are univariate gamma distributionsG(q,m1/q)
andG(q,m2/q). Moreover, the correlation coefficient ofx =
(x1, x2)T is equal to r (the reader is invited to consult
Appendix III for more details).

2) Estimation Performance:the first simulations compare
the performance of the method of moments with the ML
method as a function ofn. Note that the possible values
of n are n = (2p + 1) × (2p + 1), where p ∈ N (more
precisely3× 3 = 9, 5× 5 = 25, . . . , 25× 25 = 625). These
values are appropriate for the image registration and change
detection problems, as explained in the next sections. The
number of Monte Carlo runs is1000 for all figures presented
in this section. The other parameters for this first example are
m1 = 400, m2 = 800 and q = 1 (1-Look images). Figures 2
and 3 show the MSEs of the estimated correlation coefficient
for two different correlation structures (r = 0.2 andr = 0.8).
The circle curves correspond to the estimator of moments
whereas the triangle curves correspond to the MLE. These
figures show the interest of the ML method, which is much
more efficient for this problem than the method of moments.
The figures also show that the difference between the two
methods is more significant for large values of the correlation
coefficient r. Note that the theoretical asymptotic MSEs of
both estimators determined in (18) and (26) are also displayed
on Figs. 2 and 3 (continuous lines). The theoretical MSEs are
clearly in good agreement with the estimated MSEs, even for
small values ofn. This is particularly true for large values of
r.

3) Detection Performance:we consider synthetic vectors
x = (x1, x2)T (coming from 128 × 128 synthetic images)
distributed according to BGDs withr = 0.3 and r = 0.65
modeling the presence and absence of changes, respectively.
The correlation coefficientr of each bivariate vectorx(i,j) =
(x(i,j)

1 , x
(i,j)
2 )T (for i, j = 1 . . . 128) is estimated from vectors

belonging to windows of sizen = (2p + 1) × (2p + 1)
centered around the pixel of coordinates(i, j) in the two
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Fig. 2. log MSEs versuslog(n) for parameterr (r = 0.2).

Fig. 3. log MSEs versuslog(n) for parameterr (r = 0.8).

analyzed images. The following binary hypothesis test is then
considered:

H0 (absence of change): r̂ > λ,

H1 (presence of change): r̂ < λ,
(40)

whereλ is a threshold depending on the probability of false
alarm and r̂ is an estimator of the correlation coefficient
(obtained from the method of moments or the maximum
likelihood principle). The performance of the change detection
strategy (40) can be defined by the two following probabilities
[13, p. 34]

PD =P [acceptingH1 |H1 is true]

= P [r̂ < λ |H1 is true] =
∫ λ

−∞
p1(u)du,

(41)

PFA =P [acceptingH1 |H0 is true]

= P [r̂ > λ |H1 is true] =
∫ ∞

λ

p0(u)du,
(42)

wherep0(u) andp1(u) are the pdfs of̂r under hypothesesH0

andH1, respectively. Thus, for each value ofλ, there exists
a pair(PFA, PD). The curves ofPD as a function ofPFA are
called receiver operating characteristics (ROCs) [13, p. 38].

The ROCs for the change detection problem (40) are
depicted on figures 4(a), 4(b) and 4(c) for three different
window sizes corresponding ton = 2p + 1 ∈ {9, 15, 21}.
The ML estimator clearly outperforms the moment estimator

for these examples. However, it is interesting to note that the
two estimators have similar performances for large window
sizes.

(a) n = 9× 9 (b) n = 15× 15

(c) n = 21× 21

Fig. 4. ROCs for synthetic data for different window sizes.

B. Application to Image Registration

This section studies an image registration technique based
on BGDs. More precisely, consider two images whose pixels
are denoted{x1

1, . . . , x
n
1} and {x1

2, . . . , x
n
2}. Given the left

image x1, we propose the following basic3-step image
registration algorithm:

• Step1: determine the search area in the right imagex2.
Here, we use images that have been previously registered
by a human operator using appropriate interactive soft-
ware, a digital elevation model and geometrical sensor
models. The use of registered images allows us to validate
the results, since the expected shift between the images
is equal to 0. For this experiment and without loss of
generality, the search area is reduced to a line (composed
of 10 pixels before and10 pixels after the pixel of
interest),

• Step 2: for each pixelxj
2 in the search area, estimate

a similarity measure (correlation coefficient or mutual
information) betweenxi

1 andxj
2,

• Step3: select the pixel providing the largest similarity.

This3-step procedure has been applied to a couple of Radarsat
1-Look images acquired before and after the eruption of the
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Nyiragongo volcano which occurred in January2002. The
Radarsat images are depicted on figures 5(a) (before eruption)
and 5(b) (after eruption). Note that some changes due to the
eruption can be clearly seen on the landing track for example.
Figure 5(c) indicates the pixels of the image which have been
affected by the eruption (white pixels). This reference map
was obtained by photo-interpreters – who used the same SAR
images we are using – and ground truth elaborated by the
United Nations Office for the Coordination of Humanitarian
Affairs (OCHA) Humanitarian Information Center (HIC) on
27 January 2002, that is a few days after the eruption. This
reference map was afterwards validated by a terrain mission.
The types of change covered are: presence of a lava flow
over old existing lava flows, damaged buildings (areas with
different types of habitat). The area of study does not include
forest or areas of dense vegetation (seehttp://users.
skynet.be/technaphot/webgomma/index.htm for
some examples of damages).

(a) Before (b) After (c) Mask

Fig. 5. Radarsat images of the Nyiragongo volcano.

Figures 6(a), 6(b) and 6(c) show an average of the estimated
correlation coefficients with errobars corresponding to mean±
standard deviation/10. These estimates have been computed
for all black pixels which have not been affected by the
eruption for different window sizes. More precisely, for every
black pixel xi

1 of the left figure, we consider a window of
sizen = (2p + 1) × (2p + 1) centered aroundxi

1. The same
window is also considered in the right picture around pixel
xj

2. The correlation coefficient between the two pixelsxi
1

and xj
2 is estimated by using then = (2p + 1) × (2p + 1)

couples of pixels located in the left and right windows. This
operation is repeated for different central pixelsxj

2 belonging
to the search area (i.e. the21 pixels of [xi+τ

2 ]−10≤τ≤10 =
[xi−10

2 , . . . , xi−1
2 , xi

2, x
i+1
2 , . . . , xi+10

2 ]), where τ is the shift
between the right and left windows. The results are averaged
over all black pixels displayed in the mask 5(c). The estimated
correlation coefficient is maximum whenj = i, or equivalently
τ = 0, i.e. when the left and right windows are centered at
the same location. This result indicates that the correlation
coefficient can be efficiently used for image registration. More-
over, it is interesting to study how the estimator selectivity

(which can be defined as the relative amplitude of the peak
compared to that of the plateau) varies from one estimator
to another and depends on the window size. In particular,
the ML estimator provides a slightly better selectivity than
the estimator of moments. Note that the errobars are very
similar for the two estimators. Even if the different methods
provide similar results for image registration, it is important
to note that the proposed framework allows one to define
an interesting joint distribution for the vector(xi

1, x
j
2). This

distribution might be used for other tasks as, for instance, joint
image segmentation and classification of both data sets.

(a) Window Sizen = 7× 7

(b) Window Sizen = 9× 9

(c) Window Sizen = 15× 15

Fig. 6. Averaged correlation coefficient estimates versusτ for black
pixels with errorbars (ML: maximum likelihood estimator, Moment: moment
estimator) for Nyiragongo images for several window sizes.

The same operation is conducted on a rectangular region
composed of white pixels of the mask 5(c) (which have been
affected by the eruption) depicted in white on figures 5(a)
and 5(b). The results presented on Fig. 7 clearly show that
the estimated correlation coefficient is much smaller when
computed on a region affected by the eruption (and also that
there is no peak which might be used for registration). This
result is interesting and can be used for detecting changes
between the two images, as illustrated in the next section.
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Fig. 7. Averaged correlation coefficient estimates versusτ for white pixels
belonging to the Nyiragongo images square region (ML: maximum likelihood
estimator, Moment: moment estimator).

C. Application to Change Detection

This section considers two1-Look images acquired at
different dates around Gloucester (England) before and during
a flood (on Sept.9, 2000 and Oct.21, 2000 respectively). The
images as well as a mask indicating the pixels affected by the
flood are depicted on Figs. 8(a), 8(b) and 8(c). The reference
map 8(c) was obtained by photo-interpreters – who used the
same SAR images we are using – and a reference map built
from Landsat and SPOT data acquired one day after the radar
image.

(a) Before (b) After (c) Mask

Fig. 8. Radarsat images of Gloucester before and after Flood.

This section compares the performance of the following
change detectors

• the ratio edge detector which has been intensively used
for SAR images [14], [15],

• the correlation change detector, wherer̂ in (40) has
been estimated with the moment estimator (referred to
as “Correlation Moment”),

• the correlation change detector, wherer̂ in (40) has been
estimated with the ML method for BGDs (referred to as
“Correlation ML”).

The ROCs for this change detection problem are shown on
figures 9(a), 9(b) and 9(c) for different window sizesn. The
correlation ML detector clearly provides the best results.

(a) n = 9× 9 (b) n = 15× 15

(c) n = 21× 21

Fig. 9. ROCs for Gloucester images for different window sizes.

The last experiments illustrate the advantage of using the
mutual information for change detection. Consider the follow-
ing change detector based on the mutual information:

H0 (absence of change): Mq(1, 1, r̂) > λPFA,

H1 (presence of change): Mq(1, 1, r̂) < λPFA,
(43)

where Mq(1, 1, r̂) is the estimated mutual information ob-
tained by numerical integration of (32). The ROCs obtained
with the detectors (40) and (43) are identical, reflecting
the one-to-one transformation between the parametersr̂ and
Mq(1, 1, r̂). However, the advantage of using the mutual infor-
mation for change detection is highlighted on Fig. 10, which
shows the average probability of errorPe = 1

2 (PND + PFA)
(wherePND = 1 − PD is the probability of non detection) as
a function of the thresholdλ for the change detectors (40)
and (43). For a practical application, it is important to choose
a thresholdλPFA for these change detection problems. This
choice can be governed by the value of the probability of
errorPe. Assume that we are interested in having a probability
of error satisfyingPe ≤ 0.39. Figure 10 indicates that there
are clearly more values of the thresholdλPFA satisfying this
condition for the curve “Mutual information” than for the
curve “Correlation ML”. This remains true whatever the value
of the maximum probability of errorPe. Consequently, the
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threshold is easier to be adjusted with the detector based on
the mutual information (43) than the detector based on the
correlation coefficient (40).

Fig. 10. Average probability of errorPe = 1
2

(PFA + PND) versus threshold
λ for Gloucester images for an estimation window of sizen = 9× 9

VI. CONCLUSIONS

This paper studied the performance of image registration
and change detection techniques based on bivariate gamma
distributions. Both methods required to estimate the correlation
coefficient between two images. Estimators based on the
method of moments and on the maximum likelihood principle
were studied. The asymptotic performance of both estimators
was derived. The application to image registration and change
detection was finally investigated.

The results showed the interest of using prior information
about the data. On the other hand, the method presented here
should not be used for more general cases where the BGD
model does not hold. For these cases, the use of more general
models as, for instance, copulas [16] or bivariate versions of
the Pearson system [1, p. 6–9], should be studied.

VII. A CKNOWLEDGEMENTS

The authors would like to thank A. Crouzil and G. Letac
for fruitful discussions regarding image registration and mul-
tivariate gamma distributions, respectively.

APPENDIX I
E [logU ] WHEREU ∼ Γ(a, b)

The moment oflogU can be determined by the simple
change of variableV = bU :

E [logU ] =
∫ ∞

0

log(u)
ba

Γ(a)
e−buua−1du,

=
1

Γ(a)

∫ ∞

0

log
(v
b

)
e−vva−1dv,

=
1

Γ(a)
[Γ′(a)− log(b)Γ(a)],

= ψ(a)− log(b). (44)

APPENDIX II
E
[√
x1x2

]
AND ITS APPROXIMATION FORr → 1 WHERE

(x1, x2) ∼ Γ(q,P)
A. E

[√
x1x2

]
computation

The moment of the random variable
√
x1x2 is derived from

the probability density functionf2D of the bivariate vector
x = (x1, x2)T :

E [
√
x1x2] =

∫
R+

∫
R+

√
x1x2f2D(x1, x2)dx1dx2,

=
∫

R+

∫
R+

exp
(
−p2x1 + p1x2

p12

)
x

q−1/2
1 x

q−1/2
2

pq
12Γ (q)

× fq(cx1x2)IR2
+
(x).

The definition offq given in (4) yields:

E [
√
x1x2] =

1
pq
12Γ(q)

∑
k≥0

ck

k!Γ(q + k)

×
∫

R+

exp
(
− p2

p12
x1

)
x

q+k−1/2
1 dx1

×
∫

R+

exp
(
− p1

p12
x2

)
x

q+k−1/2
2 dx2,

=
1

pq
12Γ(q)

∑
k≥0

ck

k!Γ(q + k)

(
p12

p2

)q+k+1/2

× Γ(q + k + 1/2)
(
p12

p1

)q+k+1/2

Γ(q + k + 1/2),

=
(
p12

p1p2

)q+1 √p1p2

Γ(q)

∑
k≥0

Γ(q + k + 1/2)2

k!Γ(q + k)
rk,

=(1− r)q+1

√
m1m2

q

(
Γ(q + 1/2)

Γ(q)

)2

× 2F1

(
q +

1
2
, q +

1
2
; q; r

)
,

since

r =
p1p2 − p12

p1p2
=

p2
12

p1p2
c.

Here 2F1 is the Gauss’s hypergeometric function (see [10, p.
555–566]) defined as:

2F1(a, b; c; z) =
∞∑

k=0

(a)k(b)k

(c)k

zk

k!
,

and(a)k is the Pochlammer symbol presented in section II-C
(note that(a)k = Γ(a+k)

Γ(a) for any integerk and any reala > 0).
By using the following properties of Gauss’s hypergeometric
functions:

1) The hypergeometric series2F1(a, b; c; z) converges if
c is not a negative integer for complex numbersz such
that |z| < 1 or |z| = 1 if <[c− a− b] > 0.

2) 2F1(a, b; c; z) = (1−z)c−a−b
2F1(c−a, c− b; c; z) for

all of |z| < 1 (see [10, p. 559]),
the following results can be obtained:

E [
√
x1x2] =

√
m1m2

q

Γ(q + 1/2)2

Γ(q)2 2F1

(
−1
2
,
−1
2

; q; r
)
.
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B. E[
√
x1x2] approximation forr → 1

The following identity (Gauss’s hypergeometric theorem):

2F1 (a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

,

leads to:

2F1

(
−1
2
,
−1
2

; q; 1
)

=
Γ(q)Γ(q + 1)
Γ(q + 1/2)2

,

and to the following first order Taylor expansion aroundz = 1:

2F1

(
−1
2
,
−1
2

; q; z
)

=
Γ(q)Γ(q + 1)
Γ(q + 1/2)2

+ (z − 1)

× 2F
′

1

(
−1
2
,
−1
2

; q; 1
)

+ o(1− z),

whereo(1− z)/(1− z) tends to0, asz → 1. Using

2F
′

1 (a, b; c; z) =
ab

c
2F1 (a+ 1, b+ 1; c+ 1; z) for |z| < 1,

the previous Taylor expansion can be written:

2F1

(
−1
2
,
−1
2

; q; z
)

=
Γ(q)Γ(q + 1)
Γ(q + 1/2)2

(
1 +

z − 1
4q

)
+ o(1− z).

Finally,

E [
√
x1x2] =

√
m1m2

q

Γ(q + 1/2)2

Γ(q)2
Γ(q)Γ(q + 1)
Γ(q + 1/2)2

(
1− 1− r

4q

)
+ o(1− r),

=
√
m1m2

(
1− 1− r

4q

)
+ o(1− r) for r → 1.

APPENDIX III
GENERATION OF SYNTHETIC DATA DISTRIBUTED

ACCORDING TOBGDS

This appendix shows that the vectorx = (x1, x2)T where
xk = mk

2q

∑
1≤i≤2q(z

i
k)2 (wherezi

k is the kth component of

zi ∼ N (0,C), with C = (ci,j)1≤i,j≤2 =
(
r
|i−j|

2

)
1≤i,j≤2

) is

distributed according to a BGD whose marginals are Gamma
distributions Γ(q,m1/q) and Γ(q,m2/q) and whose corre-
lation coefficient isr. By using the independence between
vectorsz1, . . . , z2q, the Laplace transform ofx evaluated at
t = (t1, t2)T can be written:

E
[
exp

(
−tT x

)]
= E

[
2∏

k=1

exp (−tkxk)

]
,

=
2q∏

i=1

E

[
exp

(
− (zi)T S (zi)

2

)]
,

where

S =
(
t1

m1
q 0

0 t2
m2
q

)
.

By using the probability density function of a bivariate normal
distribution N (0,C), the Laplace transform can be finally

expressed as:

E
[
exp

(
−tT x

)]
=

2q∏
i=1

∫
R2

exp (−zT
(
C−1 + S

)
z)

(2π)
√

detC
dz,

=
[

1
det (I2 + CS)

]q

,

=

[
1 +

2∑
i=1

mi

q
ti + (1− r)

m1m2

q2
t1t2

]−q

,

whereI2 is the identity matrix in dimension2. According to
the definition (2), the vectorx is distributed according to a
BGD with shape parameterq and scale parametersp1 = m1

q ,
p2 = m2

q , p12 = (1 − r)m1m2
q2 . Property (8) ensures that the

correlation coefficient of(x1, x2) is r.
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