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Abstract— This paper studies a family of distributions con-
structed from multivariate gamma distributions to model the
statistical properties of multisensor synthetic aperture radar
(SAR) images. These distributions referred to as multisensor
multivariate gamma distributions (MuMGDs) are potentially
interesting for detecting changes in SAR images acquired by
different sensors having different numbers of looks. The first part
of the paper compares different estimators for the parameters
of MuMGDs. These estimators are based on the maximum
likelihood principle, the method of inference function for margins
and the method of moments. The second part of the paper
studies change detection algorithms based on the estimated
correlation coefficient of MuMGDs. Simulation results conducted
on synthetic and real data illustrate the performance of these
change detectors.

Index Terms— Multivariate gamma distributions, correlation
coefficient, maximum likelihood, change detection.

EDICS Category: GEO-RADR

I. INTRODUCTION

Combining information acquired from multiple sensors has
become very popular in many signal and image processing
applications. In the case of earth observation applications,
there are two reasons for that. The first one is that the fusion
of the data produced by different types of sensors provides a
complementarity which overcomes the limitations of a specific
kind of sensor. The other reason is that, often, in operational
applications, the user does not have the possibility to choose
the data to work with and has to use the available archive
images or the first acquisition available after an event of
interest. This is particularly true for monitoring applications
where image registration and change detection approaches
have to be implemented on different types of data [1], [2].

Both image registration and change detection techniques
consists of comparing two images I , the reference, and J , the
secondary image, acquired over the same landscape – scene –
at two different dates. Usually, the reference image is obtained
from an archive and the acquisition of the secondary image
is scheduled after an abrupt change, like a natural disaster.
In the case of the change detection, the goal is producing an
indicator of change for each pixel of the region of interest. This
indicator of change is the result of applying locally a similarity
measure to the two images. This similarity measure is usually
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chosen as the correlation coefficient or other statistical feature
in order to deal with noisy data.

The estimation of the similarity measure is performed
locally for each pixel position. Since a statistical estimation
has to be performed, and only one realization of the random
variable is available, the images are supposed to be locally
stationary and the ergodicity assumption allows to make
estimates using several neighbor pixels. This neighborhood is
the so-called estimation window. In order for the stationarity
assumption to hold, this estimation window has to be small. On
the other hand, robust statistical estimates need a high number
of samples. Therefore, the key point of the estimation of the
similarity measure is to perform high quality estimates with a
small number of samples. One way to do so is to introduce a
priori knowledge about the image statistics.

In the case of power radar images, it is well known that
the pixels are marginally distributed according to gamma
distributions [3]. Therefore, multivariate gamma distributions
(having univariate gamma margins) seem good candidates for
the robust estimation of the correlation coefficient between
radar images. When multi-date power radar images are ac-
quired from different sensors, the numbers of looks associated
with the different images can be different. As the number of
looks is the shape parameter of the gamma distribution, this
leads to study multivariate gamma distributions whose margins
have different shape parameters.

A family of multivariate gamma distributions has been
recently defined by S. Bar Lev and P. Bernardoff [4], [5].
These distributions are defined from an appropriate moment
generating function. Their margins are distributed according
to univariate gamma distributions having the same shape
parameter. They have recently shown interesting properties
for registration and change detection in SAR images acquired
by the same sensor (i.e. for images having the same number
of looks) [6], [7]. This paper studies a new family of mul-
tivariate distributions whose margins are univariate gamma
distributions with different shape parameters referred to as
multisensor multivariate gamma distributions (MuMGDs). The
application of MuBGDs to change detection in SAR images
is also investigated.

This paper is organized as follows. Section 2 recalls impor-
tant results on monosensor multivariate gamma distributions
(MoMGDs). Section 3 defines the family of MuMGDs consid-
ered for change detection in multisensor SAR images. Section
4 studies the maximum likelihood estimator (MLE), the infer-
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ence function for margins (IFM) estimator and the estimator of
moments for the unknown parameters of MuMGDs. Section 5
presents some simulation results illustrating the performance
of MuMGDs for parameter estimation and change detection on
synthetic and real SAR images. Conclusions and perspectives
are finally reported in Section 6.

II. MONOSENSOR MULTIVARIATE GAMMA
DISTRIBUTIONS

A. Definition
A random vector X = (X1, ..., Xd)T is distributed accord-

ing to an MoMGD on Rd
+ with shape parameter q and scale

parameter P if its moment generating function, or Laplace
transform, is defined as [5]:

ψq,P (z) = E
(
e−

Pd
i=1 Xizi

)
= [P (z)]−q, (1)

where z = (z1, ..., zd), q ≥ 0 and P (z) is a so-called
affine polynomial1. The Laplace transform of Xi is obtained
by setting zj = 0 for j 6= i in (1). This shows that Xi

is distributed according to a univariate gamma distribution
with shape parameter q and scale parameter pi, denoted as
Xi ∼ G(q, pi). Thus, all margins of X are univariate gamma
distributions with the same shape parameter q.

A monosensor bivariate gamma distribution (MoBGD) cor-
responds to the particular case d = 2 and is defined by its
affine polynomial

P (z) = 1 + p1z1 + p2z2 + p12z1z2, (2)

with the following conditions

p1 > 0, p2 > 0, p12 > 0, p1p2 − p12 ≥ 0. (3)

It is important to note that the conditions (3) ensure that (2)
is the Laplace transform of a probability distribution defined
on [0,∞[2. However, in the general case (d > 2), determining
necessary and sufficient conditions on P and q such that (1) is
the Laplace transform of a probability distribution defined on
[0,∞[d is a difficult problem (see [5] for more details). The
main properties of MoBGDs have been studied in [6]. Some
important results required for the present paper are recalled
below.

B. Moments
The moments of an MoBGD can be obtained by differen-

tiating the Laplace transform (2). For instance, the mean and
variance of Xi (denoted as E[Xi] and var(Xi) respectively)
can be expressed as follows

E [Xi] = qpi, var(Xi) = qp2
i , (4)

for i = 1, 2. Similarly, the covariance cov(X1, X2) and
correlation coefficient r(X1, X2) of an MoBGD are:

cov(X1, X2) = E [X1X2]− E [X1]E [X2] = q(p1p2 − p12),

r(X1, X2) =
cov(X1, X2)√

var(X1)
√

var(X2)
=
p1p2 − p12

p1p2
.

(5)

1A polynomial P (z) where z = (z1, . . . , zd) is affine if the one variable
polynomial zj 7→ P (z) can be written Azj + B (for any j = 1, . . . , d),
where A and B are polynomials with respect to the zi’s with i 6= j.

It is important to note that when cov(X1, X2) = 0 (or
equivalently p12 = p1p2) the Laplace transform of X can
be factorized as follows:

ψq,P (z1, z2) = [1 + p1z1 + p2z2 + p1p2z1z2]
q = [1 + p1z1]

q [1 + p2z2]
q
,

where the two factors in the right hand side are the Laplace
transforms of X1 and X2. As a consequence, the random
variables X1 and X2 of an MoBGD are independent if and
only if they are uncorrelated (as in the Gaussian case).

C. Probability density function (pdf)

The pdf of an MoBGD can be expressed as follows (see [8,
p. 436] for a similar result)

f2D(x) = exp
(
−p2x1 + p1x2

p12

)
xq−1

1 xq−1
2

pq
12Γ (q)

fq(cx1x2)IR2
+
(x),

(6)
where IR2

+
(x) is the indicator function on [0,∞[2 (IR2

+
(x) = 1

if x1 > 0, x2 > 0 and IR2
+
(x) = 0 otherwise), c = (p1p2 −

p12)/p2
12 and fq(z) is related to the confluent hypergeometric

function [8, p. 462] defined by

fq(z) =
∞∑

k=0

zk

k!Γ (q + k)
.

III. MULTISENSOR GAMMA DISTRIBUTIONS

A. Definition

A random vector Y = (Y1, ..., Yd)T is distributed according
to a multisensor multivariate gamma distribution (MuMGD)
with scale parameter P and shape parameter q = (q1, . . . , qd),
denoted as X ∼ G(q, P ), if it can be constructed as follows:

Y1 = X1,

Yi = Xi + Zi, 2 ≤ i ≤ d.
(7)

where
• X = (X1, ..., Xd)T is a random vector distributed

according to an MoMGD on Rd
+ with shape parameter

q1 and scale parameter P , i.e. X ∼ G(q1, P ),
• Z1, ..., Zd are independent random variables distributed

according to univariate gamma distributions (with the
convention Zi = 0 when qi−q1 = 0) Zi ∼ G(qi−q1, pi)
with qi ≥ q1.

• The vector Z = (Z2, ..., Zd)T is independent on X .
By using the independence property between X and Z, the
Laplace transform of Y can be written:

ψG(q,P )(z) = E
(
e−

Pd
i=1 Yizi

)
= [P (z)]−q1

d∏
i=1

(1− pizi)−(qi−q1). (8)

By setting zj = 0 for j 6= i in (9), we observe that the random
variable Yi is distributed according to a univariate gamma
distribution with scale parameter pi and shape parameter qi,
i.e. Yi ∼ G(qi, pi). Thus, all margins of Y have different
shape parameters in the general case. Note that the definition
above assumes that the first univariate margin Y1 has a shape
parameter q1 smaller than all other shape parameters qi, i ≥ 2
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without loss of generality. Note also that an MuMGD reduces
to an MoMGD for qi = q1,∀i ≥ 2.

A multisensor bivariate gamma distribution (MuBGD) cor-
responds to the particular case d = 2 and is defined by its
Laplace transform

ψ(z) =

(
1 +

2∑
i=1

pizi + p12z1z2

)−q1

(1− p2z2)−(q2−q1), (9)

with the following conditions:

p1 > 0, p2 > 0, p12 > 0, p1p2−p12 ≥ 0 and q2 ≥ q1. (10)

In the bi-dimensional case, the conditions (10) ensure that (9)
is the Laplace transform of a probability distribution defined
on [0,∞[2.

B. MuBGD pdf

According to (7), a vector Y = (Y1, Y2)T distributed
according to an MuBGD (i.e. Y ∼ G(q, P )) is constructed
from a random vector X = (X1, X2)T distributed according
to an MoBGD whose pdf is denoted as fX(x) and a random
variable Z ∼ G(q2−q1, p2) independent on X with pdf fZ(z)
. By using the independence assumption between X and Z,
the density of Y can be expressed as

fY (y) =
∫
fX(y1, s)fZ(y2 − s)ds. (11)

Straightforward computations leads to the following expres-
sion:

fY (y) =
(
p1p2

p12

)q1 yq1−1
1 yq2−1

2

pq1
1 p

q2
2

e
−

“
p2

p12
y1+

p1
p12

y2

”
Γ(q2)Γ(q1)

×

Φ3

(
q2 − q1; q2; c

p12

p2
y2, cy1y2

)
,

(12)

where c = (p1p2 − p12)/p2
12 and where Φ3 is the so-called

Horn function. The Horn function is one of the twenty con-
vergent confluent hypergeometric series of order two, defined
as [9]:

Φ3(a; b;x, y) =
∞∑

m,n=0

(a)m

(b)m+nm!n!
xmyn, (13)

where (a)m is the Pochhammer symbol such that (a)0 =
1 and (a)k+1 = (a + k)(a)k for any positive integer
k. It is interesting to note that the relation fq(cy1y2) =
Φ3

(
0; q; cp12

p2
y2, cy1y2

)
/Γ(q) allows one to show that the

MuBGD pdf defined in (13) reduces to the MoBGD pdf (6)
for q1 = q2 = q.

C. MuBGD moments

The moments of Y can clearly be obtained from the
moments of X and Z. This section concentrates on MuBGDs
defined by Y = (X1, X2 + Z)T , where X = (X1, X2)T

is an MoBGD with mean (m1,m2), correlation coefficient
r′ and shape parameter q1, and Z is a univariate gamma
distribution with mean m2 and shape parameter q2−q1. Using

the independence property between X and Z, the following
results can be obtained:

E [Y m
1 Y n

2 ] =
n∑

i=1

(
n

i

)
E
[
Xm

1 X
i
2

]
E
[
Zn−i

]
,

=
n∑

i=1

(
n

i

)
mn−i

2

(q2 − q1)n−i

(q2 − q1)n−i
E
[
Xm

1 X
i
2

]
, (14)

for all (m,n) ∈ N2. The moments of an MoBGD were derived
in [6]:

E[Xn1
1 Xn2

2 ] = mn1
1 mn2

2

(q1)n1

qn1
1

(q1)n2

qn2
1

×

min (n1,n2)∑
k=0

(−n1)k(−n2)k

(q1)k

(r′)k

k!
,

(15)

for all (n1, n2) ∈ N2. Expressions (14) and (15) can be used
to derive analytical expressions of MuMGD moments. For
instance, the first and second order moments can be written
as

E[Yi] = qipi, var(Yi) = qip
2
i , i = 1, 2

cov(Y1, Y2) = cov(X1, X2) = q1(p1p2 − p12),

r(Y1, Y2) =
cov(X1, Y2)√

var(Y1)
√

var(Y1)
=

q1√
q1q2

p1p2 − p12

p1p2
.

It is interesting to note that the conditions (3) ensure that the
correlation coefficient satisfy the constraint 0 ≤ r(Y1, Y2) ≤√
q1/q2. In other words, the normalized correlation coefficient

defined by

r′(Y1, Y2) =
√
q2
q1
r(Y1, Y2) =

p1p2 − p12

p1p2
,

is such that 0 ≤ r′(Y1, Y2) ≤ 1. As explained in II-B, the
random variables X1 and X2 are independent if and only
if p1p2 − p12 = 0. Since Z2 is independent from X1 and
X2, a necessary and sufficient condition for the margins of an
MuBGD Y1 and Y2 to be independent is r′(Y1, Y2) = 0. Note
finally that for known values of the shape parameters q1 and
q2, an MuBGD is fully characterized by the parameter vector
θ = (E[Y1], E[Y2], r′(Y1, Y2)), since θ and (p1, p2, p12) are
related by a one-to-one transformation.

IV. PARAMETER ESTIMATION FOR MUBGDS

This section studies different methods for estimating the
parameters of MuBGDs.2 The following notations are used in
the rest of the paper

m1 = E[Y1], m2 = E[Y2], r′ = r(Y1, Y2)
√
q2
q1
,

inducing θ = (m1,m2, r
′)T . Note that the parameters p1, p2

and p12 can be expressed as functions of θ as follows p1 =
m1
q1
, p2 = m2

q2
and p12 = m1m2

q1q2
(1 − r′). Note also that the

parameters q1 and q2 are assumed to be known in this paper,
as in most practical applications. In the case where q1 and q2

2The results proposed here could be used to estimate the parameters of
MuMGDs by using the concept of composite likelihood. The interested reader
is invited to consult [10], [11] and references therein for more details.
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are unknown, these parameters should be included in θ and
estimated jointly with m1,m2 and r′3.

A. Maximum Likelihood (ML) Method

1) Principles: The ML method can be applied to Y since a
closed-form expression of its pdf is available. After removing
the terms which do not depend on θ, the log-likelihood
function of Y can be written

l(Y ;θ) =− nq1 log (1− r′)− nq1 logm1 − nq2 logm2

− n
q1

m1(1− r′)
Y 1 − n

q2
m2(1− r′)

Y 2

+
n∑

i=1

log Φ3

(
q2 − q1; q2; dY i

2 , cY
i
1Y

i
2

)
,

(16)

where d = r′q2
m2(1−r′) , Y 1 = 1

n

∑n
i=1 Y

i
1 , Y 2 = 1

n

∑n
i=1 Y

i
2 are

the sample means of Y1 and Y2 and c defined previously can be
expressed as function of θ using the relation c = r′q1q2

m1m2(1−r′)2 .
By differentiating the log-likelihood with respect to (wrt) θ,
the MLE of θ is obtained as a solution of:

u(Y ;θ) =
(
∂l(Y ;θ)
∂m1

,
∂l(Y ;θ)
∂m2

,
∂l(Y ;θ)
∂r′

)T

= 0T ,

where u(Y ;θ) =
∂l(Y ;θ)
∂θ

is the so-called score function, or
equivalently by solving

− nq1 +
nq1

m1(1− r′)
Y 1 − r′∆2 = 0, (17)

− nq2 +
nq2

m2(1− r′)
Y 2 − r′(∆1 + ∆2) = 0, (18)

nq1 −
2∑

i=1

nqi
mi(1− r′)

Y i + ∆1 + (1 + r′)∆2 = 0. (19)

with

∆1 =
q2 − q1

m2(1− r′)

n∑
i=1

Y i
2

Φ3(q2 − q1 + 1; q2 + 1; dY i
2 ; cY i

1Y
i
2 )

Φ3(q2 − q1; q2; dY i
2 ; cY i

1Y
i
2 )

,

∆2 =
q1(1− r′)−2

m1m2

n∑
i=1

Y i
1Y

i
2

Φ3(q2 − q1; q2 + 1; dY i
2 ; cY i

1Y
i
2 )

Φ3(q2 − q1; q2; dY i
2 ; cY i

1Y
i
2 )

.

The MLE of m2 can be obtained by summing (17), (18), (19)
and replacing the value of ∆1 + ∆2 in (18):

m̂2ML = Y 2. (20)

The MLEs of m1 and r′ are obtained by replacing m2 by
m̂2ML in (16) and by maximizing the resulting log-likelihood
l(Y ; (m1, m̂2ML, r

′) wrt m1 and r′. This last maximization
is achieved by using a constrained (m1 > 0 and r′ ∈ [0, 1])
quasi-Newton method, since an analytical expression of the
log-likelihood gradient is available4. Some elements regarding

3The interested reader is invited to consult [12] for a related example where
the shape parameter of a mono sensor multivariate gamma distribution (q1 =
q2 = q) was estimated from mixed Poisson data. This section addresses
the problem of estimating the unknown parameter vector θ from n vectors
Y = (Y 1, . . . , Y n), where Y i = (Y i

1 , Y i
2 ) is distributed according to an

MuBGD with parameter vector θ
4The negative log-likelihood function has a unique minimum with repect

to r′ in all pratical cases. The reador is invited to consult [13] for discussions
and simulations results.

the numerical evaluation of the Horn Function are detailed in
appendices I and II. It is important to note that the MLE of m1

differs from Y 1 in the general case5. Finally, the MLE of the
correlation coefficient r is deduced by functional invariance
as

r̂ML =
√
q1
q2
r̂′ML.

2) Performance: The properties of the ML estimator m̂2ML
can be easily derived from the properties of the univariate
gamma distribution G(q2, p2). This estimator is obviously un-
biased, convergent and efficient. However, the performance of
m̂1ML and r̂ML are more difficult to study. Of course, the MLE
is known to be asymptotically unbiased and asymptotically
efficient, under mild regularity conditions. Thus, the mean
square error (MSE) of the estimates can be approximated for
large data records by the Cramer-Rao lower bound (CRLB).
For unbiased estimators, the CRLB is obtained by inverting
the following Fisher information matrix I:

I(θ) = −E
[
∂u(Y ;θ)

∂θ

]
.

Thus, the computation of I requires to determine the negative
expectations of second-order derivatives of l(Y ;θ) wrt m1,
m2 and r in (16). Closed-form expressions for the elements
of I are difficult to obtain because of the term log Φ3. In
such situation, it is very usual to approximate the expectations
by using Monte Carlo methods. This will provide interesting
approximations of the ML MSEs (see simulation results of
Section V).

B. Inference function for margins (IFM)

1) Principles: IFM is a two-stage estimation method whose
main ideas can be found for instance in [14, Chapter 10] and
are summarized below in the context of MuBGDs:
• estimate the unknown parameters m1 and m2 from the

marginal distributions of Y1 and Y2. This estimation
is conducted by maximizing the marginal likelihoods
l(Y1;m1) and l(Y2;m2) wrt m1 and m2 respectively,

• estimate the parameter r′ by maximizing the joint likeli-
hood l(Y ; m̂1ML, m̂2ML, r

′) wrt r′. Note that the parame-
ters m1 and m2 have been replaced in the joint likelihood
by their estimates resulting from the first stage of IFM.

The IFM procedure is often computationally simpler than the
ML method which estimates all the parameters simultaneously
from the joint likelihood. Indeed, a numerical optimization
with several parameters is much more time-consuming com-
pared with several optimizations with fewer parameters. The
marginal distributions of an MuBGD are univariate gamma
distributions with shape parameters qi and means mi, for i =
{1, 2}. Thus, the IFM estimators of m1,m2, r

′ are obtained
as a solution of:

g(Y ;θ) =
(
∂l1(Y1;m1)

∂m1
,
∂l2(Y2;m2)

∂m2
,
∂l(Y ;θ)
∂r′

)T

= 0T

5There is no closed-form expression for the MLE of m1 contrarily to m2.
Indeed, there is some kind of dissymmetry between Y1 and Y2 inherent to
the proposed model (7). This dissymmetry will disappear in the method based
on the inference for margins studied in section B.
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where li is the marginal log-likelihood function associated to
the univariate random variable Yi, for i = {1, 2}, and l is
the joint log-likelihood defined in (16). The IFM estimators
of m1 and m2 are classically obtained from the properties of
the univariate gamma distribution:

m̂1 IFM = Y 1, m̂2 IFM = Y 2. (21)

The IFM estimator of r′ is obtained by replacing m1 and m2

by Y 1 and Y 2 in (16) and by minimizing the resulting log-
likelihood l(Y ;Y 1, Y 2, r

′) wrt r′. This last minimization is
achieved by using a constrained quasi-Newton method (with
the constraint r′ ∈ [0, 1]), since an analytical expression of the
log-likelihood gradient is available.

Note that the ML method presented before requires to
optimize the log-likelihood l(Y ; (m1, m̂2ML, r

′) wrt m1 and
r′ whereas the IFM method only requires to optimize
l(Y ;Y 1, Y 2, r

′) wrt a single variable r′. The optimization
procedure is therefore much less time-consuming for IFM than
for the ML method. Note also that the estimator of m2 is the
same for the ML and IFM methods. Finally, it is interesting to
point out that the joint likelihood is the product of univariate
gamma pdfs when r′ = 0. As a consequence, the ML and
IFM estimators are the same when r′ = 0.

2) Performance: Asymptotic properties of the IFM esti-
mator can be derived from the set of inferences functions
g(Y ;θ) under the usual regularity conditions for the MLE (the
interested reader is invited to consult [14] for more details).
In particular, the IFM estimator of θ denoted as θ̂IFM is such
that

√
n
(
θ̂IFM − θ

)
converges in distribution to the normal

distribution N (0, V ), where the asymptotic covariance matrix
V is the inverse Godambe information matrix defined as:

V = D−1
g MgD

−T
g (22)

where

Dg = E [∂g(Y ;θ)/∂θ] , Mg = E
[
g(Y ;θ)gT (Y ;θ)

]
.

Straightforward computations yield the following expressions
for matrices Dg and Mg [15]:

Dg =

 J11 0 0
0 J22 0
I13 I23 I33

 , Mg =

 J11 J12 0
J12 J22 0
0 0 I33


where
• Iij are the entries of the Fisher information matrix, I =

(Iij)1≤i,j≤3 ,
• J11 and J22 are the Fisher information associated with

the margins Y1 and Y2 respectively,
• J12 = E [g1(Y ;θ)g2(Y ;θ)] =

E

[
∂l1(Y1;m1)

∂m1

∂l2(Y2;m2)
∂m2

]
.

The terms J11, J22, J12 associated to MuBGDs are easily de-
rived by considering the univariate log-likelihoods l1(Y1;m1)
and l2(Y2;m2):

J11 =
q1
m2

1

, J22 =
q2
m2

2

, J12 =
q1

m1m2
r′.

As explained in IV-A.2, the Fisher information entries Iij do
not have closed-form expressions. Consequently, these terms

have been computed by using numerical integration (Simpson
quadrature). Note that this method allows one to control the
approximation error.

C. Method of Moments

The estimators of (m1,m2, r) derived in this paper will be
compared to the standard estimators based on the method of
moments

m̂1Mo = X1, m̂2Mo = X2, (23)

r̂Mo =
∑n

i=1(X
i
1 −X1)(Xi

2 −X2)√∑n
i=1(X

i
1 −X1)2

√∑n
i=1(X

i
2 −X2)2

. (24)

The asymptotic performance of the estimator θ̂Mo =
(m̂1Mo, m̂2Mo, r̂Mo)

T can be derived by imitating the results
of [16] derived in the context of time series analysis. More
precisely, the moment estimator of θ can be rewritten as

θ̂Mo = g (sn) =

(
s1n, s

2
n,

s5n − s1ns
2
n√

s3n − (s1n)2
√
s4n − (s2n)2

)T

,

where sn =
(
s1n, . . . , s

5
n

)T =
[

1
n

∑n
i=1 Y

i
1 ,

1
n

∑n
i=1 Y

i
2 ,

1
n

∑n
i=1(Y

i
1 )2, 1

n

∑n
i=1(Y

i
2 )2, 1

n

∑n
i=1 Y

i
1Y

i
2

]T
contains the

appropriate first and second order empirical moments of Y =
(Y1, Y2)T . By denoting as Σ(θ) = n cov (sn) the covariance
matrix of the vector

√
nsn and G(θ) the jacobian of the

function g defined above, it can be shown that the asymptotic
covariance matrix of

√
n
(
θ̂Mo − θ

)
is G(θ)Σ(θ)G(θ)T [16].

The determination of the covariance matrix Σ(θ) requires to
know appropriate theoretical moments of Y = (Y1, Y2)T (up
to the fourth order). These moments can be determined by us-
ing the results of section III-C. The reader is invited to consult
[6] for more details regarding the asymptotic performance of
the moment estimator θ̂Mo for MuBGDs.

V. SIMULATION RESULTS

Many simulations have been conducted to validate the previ-
ous theoretical results. This section presents some experiments
obtained with a vector Y = (Y1, Y2)T distributed according
to an MuBGD whose Laplace transform is (9).

A. Generation of synthetic data

According to the definition given in Section III-A, a vector
Y distributed according to an MuBGD can be generated by
adding a random variable Z distributed according to a uni-
variate gamma distribution to a random vector X distributed
according to an MoBGD. The generation of a vector X whose
Laplace transform is (1) has been described in [6] and is
summarized below:
• simulate 2q independent multivariate Gaussian vectors of

R2 denoted as Z1, . . . , Z2q with means (0, 0) and the
2 × 2 covariance matrix C = (ci,j)1≤i,j≤2 with ci,j =

r
|i−j|

2 ,
• compute the kth component of X = (X1, X2) as Xk =

mk

2q

∑
1≤i≤2q(Z

i
k)2, Zi

k being the kth component of Zi.
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It is interesting to note that the generation of a random vector
distributed according to a multivariate gamma distribution is
straightforward here since 2q is an integer (this assumption is
not a problem in practical applications since q is the number
of looks of the SAR image). However, if 2q wouldn’t be
an integer, the generation of the random vector X could be
achieved by using an accept-reject procedure such as the one
detailed in [17, p. 51].

B. Estimation performance

1) ML method and method of moments: The first simu-
lations compare the performance of the estimators based on
the method of moments and the ML method as a function
of the sample size n. Note that the possible values of n
correspond to the numbers of pixels of squared windows of
size (2p + 1) × (2p + 1), where p ∈ N. These values are
appropriate to the change detection problem. The number of
Monte Carlo runs is 10000 for all figures presented in this
section. The other parameters for this example are m1 = 100,
m2 = 100, q1 = 1 (number of looks of the first image) and
q2 = 2 (number of looks of the second image). Figures 1(a),
1(b) and 1(c) show the MSEs of the estimated normalized
correlation coefficient for different values of r′ (r′ = 0.2,
r′ = 0.5 and r′ = 0.8). The losange curves correspond to the
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(c) r′ = 0.8

Fig. 1. log MSEs versus log n for parameter r (q1 = 1, q2 = 2, m1 = 100
and m2 = 100).

estimator of moments whereas the triangle curves correspond
to the MLE. This figure shows the interest of the ML method,
which is much more efficient for this problem than the method
of moments, particularly for large values of the correlation
coefficient r′. Note that the theoretical asymptotic MSEs of
both estimators are also depicted (continuous lines). They are
clearly in good agreement with the estimated MSEs, even for
small values of n. Finally, these figures show that “reliable”
estimates of r′ can be obtained for values of n larger than
9× 9, i.e. even for relatively small window sizes.

Figures 2(a) and 2(b) compare the MSEs of the estimated
mean m1 obtained for the ML method and the method of
moments for two values of r′ (r′ = 0.8 and r′ = 0.9). Both
estimators perform very similarly for this parameter, even if
the difference is slightly more noticeable for larger values of
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(b) r′ = 0.9

Fig. 2. log MSEs versus log n for parameter m1 (q1 = 1, q2 = 2, m1 =
100 and m2 = 100).

r′. Note that the estimators of m2 obtained for the ML and
moment methods are the same. Thus, the corresponding MSEs
have not been presented here for brevity.

2) ML and IFM: This section compares the performance
of the ML and IFM estimators for the parameters r and
m1. Figure 3 first shows the asymptotic performance of both
estimators by depicting the ratio of their asymptotic variances,
referred to as asymptotic ratio efficiency (ARE), as a function
of r. This figure shows that the ML and IFM estimators
of the correlation coefficient r have very similar asymptotic
variances when r′ is not too close from 1. This result is
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Fig. 3. Asymptotic Ratio Efficiency (ARE) (q1 = 1, q2 = 5, m1 = 1 and
m2 = 1).

confirmed in Fig. 4 which shows the MSEs of the estimated
correlation coefficient obtained with the ML and IFM methods
for different values of the sample size n (the parameters for
this simulation are q1 = 1, q2 = 2, m1 = 100, m2 = 100
and r′ = 0.9). Figure 3 also shows that the asymptotic
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Fig. 4. log MSEs versus log n for parameter r (r′ = 0.9, q1 = 1, q2 = 2,
m1 = 100 and m2 = 100).

performance of the ML and IFM estimators for parameter m1

differ significantly when r′ approaches 1. However, this is
not a major problem since the change detection algorithms
proposed in this paper will be based on r only (see next
section). Based on these results, the IFM method will be
preferred to the ML method since it involves much smaller
computational cost.
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C. Detection performance

This section considers synthetic vectors x = (x1, x2)T

(coming from 762×292 synthetic images) distributed accord-
ing to MuBGDs with r = 0.3 and r = 0.7, modeling the
presence and absence of changes, respectively. The correlation
coefficient r of each bivariate vector x(i,j) = (x(i,j)

1 , x
(i,j)
2 )T

(for 1 ≤ i ≤ 762, 1 ≤ j ≤ 292) is estimated locally from
pixels belonging to windows of size n = (2p+ 1)× (2p+ 1)
centered around the pixel of coordinates (i, j) in the two
analyzed images. The change detection problem in multisensor
SAR images is addressed by using the following decision rule:

Decide H0 (absence of change) if r̂ > λ,

Decide H1 (presence of change) if r̂ ≤ λ,
(25)

where λ is a threshold depending on the probability of false
alarm (PFA) and r̂ is an estimator of the correlation coefficient
(obtained from the method of moments or the IFM method).
The performance of the change detection strategy (25) can be
defined by the two following probabilities [18, p. 34]

PD = P [accepting H1 |H1 is true] = P [r̂ < λ |H1 is true] ,
PFA = P [accepting H1 |H0 is true] = P [r̂ < λ |H0 is true] .

Thus, a pair (PFA, PD) can be defined for each value of λ.
The curves representing PD as a function of PFA are called
receiver operating characteristics (ROCs) and are classically
used to assess detection performance [18, p. 38].

The ROCs for the change detection problem (25) are
depicted on Figs 5(a), 5(b) and 5(c) for three representative
values of (q1, q2) and two window sizes (9×9) and (21×21).
The IFM estimator clearly outperforms the moment estimator
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Fig. 5. ROCs for synthetic data.

for these examples. Figures 5(a) and 5(b) also show that

the detection performance seems to decrease when q2 − q1
increases, i. e. when the difference between the numbers of
looks of the two images increases. In order to confirm this
observation, we have derived theoretical ROCs by using the
asymptotic Gaussian distribution for the estimated correlation
coefficient (see section IV, B. 2). In this case, by denoting
r0 and r1 the true values of the correlation coefficient under
hypotheses H0 and H1, the following results can be obtained:

PD = P [r̂ < λ |H1 is true] = P
[
r̂ < λ |r̂ ∼ N

(
r1, σ

2
1

)]
,

PFA = P [r̂ < λ |H0 is true] = P
[
r̂ < λ |r̂ ∼ N

(
r0, σ

2
0

)]
,

where σ2
0 and σ2

1 are the asymptotic variances of the estimated
correlation coefficient r̂ under hypotheses H0 and H1 (calcu-
lated from the inverse Godambe information matrix defined
in (22)) . By denoting as Φ(x) the cumulative distribution
function of the Gaussian distribution N (0, 1), the following
result is then classically obtained

PD = Φ
[
r0 − r1
σ1

+
σ0

σ1
Φ−1(PFA)

]
. (26)

This result provides theoretical asymptotic expressions for the
ROCs associated to the detection problem (25) and allow us
to analyze detection performance as functions of the MuBGD
parameters. For instance, Fig. 6 shows PD as functions of
q1 and q2 for a given probability of false alarm PFA = 0.3.
This figure clearly confirms that the detection performance is

Fig. 6. PD versus shape parameters q1 and q2 (PFA = 0.3, n = 1).

a decreasing function of q2 − q1.

D. Change detection in real images

This section first considers images acquired at different
dates around Gloucester (England) before and during a flood
(on Sept. 9, 2000 and Oct. 21, 2000 respectively). The 1-
look images as well as a mask indicating the pixels affected
by the flood are depicted on Figs 7(a), 7(b) and 7(c). The
reference map 7(c) was obtained by photo-interpreters – who
used the same SAR images we are using – and a reference
map built from Landsat and SPOT data acquired one day
after the radar image. The original 1-look images have been
transformed into images with larger numbers of looks by
replacing each pixel by the average of pixels belonging to
a given neighborhood. This section compares the performance
of the following change detectors
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(a) Before (b) After (c) Mask

Fig. 7. Radarsat images of Gloucester before and after flood.

• the ratio edge detector which has been intensively used
for SAR images [19], [20]. This detector mitigates the
effects of the multiplicative speckle noise by computing
the ratio of averages of pixel values belonging to neigh-
borhoods of the pixels under consideration.

• the correlation change detector, where r̂ in (25) has
been estimated with the moment estimator (referred to
as “Correlation Moment”),

• the correlation change detector, where r̂ in (25) has been
estimated with the IFM method for BGDs (referred to as
“Correlation IFM”).

The ROCs for this change detection problem are shown on
Figs 8(a), 8(b) and 8(c) for different window sizes (n = 9×9,
n = 15 × 15 and n = 21 × 21). The numbers of looks for
the two images are q1 = 1 and q2 = 5. The correlation IFM
detector clearly provides the best results.

The second set of experiments is related to a couple of
Radarsat images acquired before and after the eruption of
the Nyiragongo volcano which occurred in January 2002. The
Radarsat images are depicted on figures 9(a) (before eruption)
and 9(b) (after eruption). Note that some changes due to the
eruption can be clearly seen on the landing track for example.
Figure 9(c) indicates the pixels of the image which have been
affected by the eruption (white pixels). The ROCs for this
change detection problem are shown on Figs 10(a), 10(b) and
10(c) for different window sizes (n = 9 × 9, n = 15 × 15
and n = 21× 21). The numbers of looks for the two images
are q1 = 3 and q2 = 5. The correlation IFM detector provides
better performance than the conventional correlation moment
detector in all cases. The ratio edge detector also shows
interesting detection performance for this example because
the volcano eruption has produced significant changes in the
pixel intensities. Note however that the proposed correlation
IFM detector gives better performance for large PFAs. Even
if these large PFA values are usually considered as a bad
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Fig. 8. ROCs for Gloucester images (q1 = 1, q2 = 5).

(a) Before (b) After

(c) Mask

Fig. 9. Radarsat images of Nyiragongo before and after eruption.

result in classical detection problems, the reader has to bear in
mind that when working with images, simple post-processing
strategies can dramatically improve the change detection per-
formance. Indeed, when looking at detection maps, two types
of false alarms can be observed: isolated pixels and boundary
pixels. For the first type of errors, a simple median filter a
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Fig. 10. ROCs for Nyiragongo images (q1 = 3, q2 = 6).

morphological opening, gives very good results. The second
type of false alarm is due to the spatial extent of the estimation
windows, which over-detect at the output boundaries of the
change areas. This is not a main drawback in terms of change
map production, since the change areas remain the same and
only the spatial resolution of the map is affected.

VI. CONCLUSIONS

This paper studied a new family of multivariate gamma
based distributions for multisensor SAR images referred to as
MuMGDs. Estimation algorithms based on the ML method,
the IFM principle and the methods of moments were studied
to estimate the parameters of these distributions. In particular,
the estimated correlation coefficient of MuMGDs showed
interesting properties for detecting changes in radar images
with different numbers of looks.

Being able to handle images with different numbers of looks
is very useful, not only when the images have been acquired
by different sensors, but also when both sensors have the
same theoretical number of looks. Indeed, change detection
algorithms require precise image co-registration which is usu-
ally achieved by image interpolation. Image interpolation and
other image pre-processing steps modify locally the equivalent
number of looks of the images. Therefore, even if the images
have been acquired by the same sensor in the same imaging
mode, differences in the equivalent number of looks can be
observed. The algorithms presented in this paper could be used
for detecting changes in this kind of images. Of course, in the
case where the equivalent number of looks has to be estimated
locally, an assessment of the influence of the estimation
errors in the final MuMGD parameter estimation should be
addressed. This point is currently under investigation.
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APPENDIX I
NUMERICAL EVALUATION OF THE HORN FUNCTION Φ3

Some series representation in terms of special functions are
useful to compute hypergeometric series of order two [21]. For
the Horn function Φ3 defined in (13), the following expansion
is particularly useful:

Φ3(a; b;x, y) =
∞∑

n=0

yn

(b)nn! 1F1[a, b+ n, x],

where 1F1 is the confluent hypergeometric series of order
one, i. e. 1F1[a, b, x] =

∑∞
n=0

(a)n

(b)nn!x
n. This confluent hy-

pergeometric series 1F1[a, b, x] can be expressed as follows
[22]:

1F1[a, b, x] =
Γ(b)
Γ(a)

exxa−b
∑
i≥0

(b− a)i(1− a)i

i!xi
×

Fγ(x; i+ b− a),

(27)

where Fγ(x; ν) is the cumulative distribution function of a
univariate gamma distribution with shape parameter ν and
scale parameter 1. Note that the summation in (27) is finite
since a ≥ 1 is an integer. This yields the following expression
of Φ3:

Φ3(a; b;x, y) =
Γ(b)
Γ(a)

exxa−b
∞∑

n=0

(y/x)n

n!
×

∑
i≥0

(b+ n− a)i(1− a)i

i!xi
Fγ(x; i+ b+ n− a),

(28)

where the last summation (i ≥ 0) is finite. Equation (28)
provides a numerically stable way of evaluating Φ3(a; b;x, y)
for large values of x and y. When (x, y) is close to (0, 0), the
definition of Φ3 in (13) will be preferred.

APPENDIX II
DERIVATIVES OF THE HORN FUNCTION Φ3

From the series representation of the function Φ3 defined
in (13), the following results can be obtained:
∂

∂x
Φ3(a; b;x, y) =

∑
m≥1,n≥0

(a)m

(b)m+n(m− 1)!n!
xm−1yn ,

=
Γ(a+ 1)

Γ(a)
Γ(b)

Γ(b+ 1)

∑
m,n≥0

(a+ 1)m

(b+ 1)m+nm!n!
xmyn ,

=
a

b
Φ3(a+ 1; b+ 1;x, y) .

∂

∂y
Φ3(a; b;x, y) =

∑
m≥0,n≥1

(a)m

(b)m+nm!(n− 1)!
xmyn−1 ,

=
Γ(b)

Γ(b+ 1)

∑
m,n≥0

(a)m

(b+ 1)m+nm!n!
xmyn ,

=
1
b
Φ3(a; b+ 1;x, y) .
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